These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16321639)

  • 1. Can a finite set of knee extension in supine position be used for a knee functional examination?
    Marin F; Sangeux M; Charleux F; Ho Ba Tho MC; Dürselen L
    J Biomech; 2006; 39(2):359-63. PubMed ID: 16321639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging.
    Sangeux M; Marin F; Charleux F; Dürselen L; Ho Ba Tho MC
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):984-91. PubMed ID: 16844273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary motions of the knee during weight bearing and non-weight bearing activities.
    Dyrby CO; Andriacchi TP
    J Orthop Res; 2004 Jul; 22(4):794-800. PubMed ID: 15183436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the knee joint flexion-extension axis for purposes of quantitative gait analysis: an evaluation of methods.
    Schache AG; Baker R; Lamoreux LW
    Gait Posture; 2006 Aug; 24(1):100-9. PubMed ID: 16191481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patellofemoral joint contact area increases with knee flexion and weight-bearing.
    Besier TF; Draper CE; Gold GE; Beaupré GS; Delp SL
    J Orthop Res; 2005 Mar; 23(2):345-50. PubMed ID: 15734247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined magnetic resonance imaging approach for the assessment of in vivo knee joint kinematics under full weight-bearing conditions.
    Al Hares G; Eschweiler J; Radermacher K
    Proc Inst Mech Eng H; 2015 Jun; 229(6):439-51. PubMed ID: 25979443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a method to map tibiofemoral contact points in the normal knee using MRI.
    Scarvell JM; Smith PN; Refshauge KM; Galloway HR; Woods KR
    J Orthop Res; 2004 Jul; 22(4):788-93. PubMed ID: 15183435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agonist muscle activity and antagonist muscle co-activity levels during standardized isotonic and isokinetic knee extensions.
    Remaud A; Cornu C; Guével A
    J Electromyogr Kinesiol; 2009 Jun; 19(3):449-58. PubMed ID: 18093843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of the passive knee flexion and extension tests in healthy subjects.
    Gnat R; Kuszewski M; Koczar R; Dziewońska A
    J Manipulative Physiol Ther; 2010; 33(9):659-65. PubMed ID: 21109056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does knee position at the time of tourniquet inflation affect knee range of motion?
    Zura RD; Adams SB; Mata BA; Pietrobon R; Olson SA
    J Surg Orthop Adv; 2007; 16(4):171-3. PubMed ID: 18053398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging for in vivo assessment of three-dimensional patellar tracking.
    Fellows RA; Hill NA; Gill HS; MacIntyre NJ; Harrison MM; Ellis RE; Wilson DR
    J Biomech; 2005 Aug; 38(8):1643-52. PubMed ID: 15958222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion.
    Tamaki M; Tomita T; Watanabe T; Yamazaki T; Yoshikawa H; Sugamoto K
    J Arthroplasty; 2009 Sep; 24(6):972-8. PubMed ID: 19033084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy.
    Lu TW; Tsai TY; Kuo MY; Hsu HC; Chen HL
    Med Eng Phys; 2008 Oct; 30(8):1004-12. PubMed ID: 18417412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does a specific MR imaging protocol with a supine-lying subject replicate tarsal kinematics seen during upright standing?
    Wolf P; Stacoff A; Liu A; Arndt A; Nester C; Lundberg A; Stuessi E
    Biomed Tech (Berl); 2007 Aug; 52(4):290-4. PubMed ID: 17691862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helical axes of skeletal knee joint motion during running.
    van den Bogert AJ; Reinschmidt C; Lundberg A
    J Biomech; 2008; 41(8):1632-8. PubMed ID: 18457841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of additional load on the moments of the agonist and antagonist muscle groups at the knee joint during closed chain exercise.
    Rao G; Amarantini D; Berton E
    J Electromyogr Kinesiol; 2009 Jun; 19(3):459-66. PubMed ID: 18249140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a neoprene sleeve on knee joint position sense during sitting open kinetic chain and supine closed kinetic chain tests.
    Birmingham TB; Kramer JF; Inglis JT; Mooney CA; Murray LJ; Fowler PJ; Kirkley S
    Am J Sports Med; 1998; 26(4):562-6. PubMed ID: 9689379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coactivation patterns of the medial and lateral hamstrings based on joint position and movement velocity during isokinetic movements.
    Croce RV; Miller JP
    Electromyogr Clin Neurophysiol; 2006; 46(2):113-22. PubMed ID: 16796001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.