BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16321641)

  • 1. Computation of the three-dimensional medial surface dynamics of the vocal folds.
    Döllinger M; Berry DA
    J Biomech; 2006; 39(2):369-74. PubMed ID: 16321641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical reconstruction of high-speed surface dynamics in an uncontrollable environment.
    Luegmair G; Kniesburges S; Zimmermann M; Sutor A; Eysholdt U; Döllinger M
    IEEE Trans Med Imaging; 2010 Dec; 29(12):1979-91. PubMed ID: 21118756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting physiologically relevant parameters of vocal folds from high-speed video image series.
    Tao C; Zhang Y; Jiang JJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):794-801. PubMed ID: 17518275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics.
    George NA; de Mul FF; Qiu Q; Rakhorst G; Schutte HK
    Phys Med Biol; 2008 May; 53(10):2667-75. PubMed ID: 18443389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Basic research on vocal fold dynamics: three-dimensional vibration analysis of human and canine larynges].
    Döllinger M; Rosanowski F; Eysholdt U; Lohscheller J
    HNO; 2008 Dec; 56(12):1213-20. PubMed ID: 17431569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics.
    Lohscheller J; Eysholdt U; Toy H; Dollinger M
    IEEE Trans Med Imaging; 2008 Mar; 27(3):300-9. PubMed ID: 18334426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production.
    Sidlof P; Svec JG; Horácek J; Veselý J; Klepácek I; Havlík R
    J Biomech; 2008; 41(5):985-95. PubMed ID: 18289553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Videostrobokymography: a new method for the quantitative analysis of vocal fold vibration.
    Sung MW; Kim KH; Koh TY; Kwon TY; Mo JH; Choi SH; Lee JS; Park KS; Kim EJ; Sung MY
    Laryngoscope; 1999 Nov; 109(11):1859-63. PubMed ID: 10569423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic tracing of vocal-fold motion from high-speed digital images.
    Yan Y; Chen X; Bless D
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1394-400. PubMed ID: 16830943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation.
    Doellinger M; Berry DA
    J Voice; 2006 Sep; 20(3):401-13. PubMed ID: 16300925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model.
    Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth-kymography of vocal fold vibrations: part II. Simulations and direct comparisons with 3D profile measurements.
    de Mul FF; George NA; Qiu Q; Rakhorst G; Schutte HK
    Phys Med Biol; 2009 Jul; 54(13):3955-77. PubMed ID: 19494425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinearities in stereoscopic phase-differencing.
    Monaco JP; Bovik AC; Cormack LK
    IEEE Trans Image Process; 2008 Sep; 17(9):1672-84. PubMed ID: 18713673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of superior surface strains and stresses, and vocal fold contact pressure in a synthetic larynx model using digital image correlation.
    Spencer M; Siegmund T; Mongeau L
    J Acoust Soc Am; 2008 Feb; 123(2):1089-103. PubMed ID: 18247910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal chaos in excised larynx vibrations.
    Zhang Y; Jiang JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):035201. PubMed ID: 16241503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving reliability and accuracy of vibration parameters of vocal folds based on high-speed video and electroglottography.
    Qin X; Wang S; Wan M
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1744-54. PubMed ID: 19272979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of videostrobokymography for the quantitative analysis of laryngeal vibratory pattern.
    Lee JS; Kim E; Park KS; Sung MY; Sung MW; Kim KH
    Stud Health Technol Inform; 1998; 52 Pt 2():1022-4. PubMed ID: 10384614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed digital imaging of the medial surface of the vocal folds.
    Berry DA; Montequin DW; Tayama N
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2539-47. PubMed ID: 11757943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaos in voice, from modeling to measurement.
    Jiang JJ; Zhang Y; McGilligan C
    J Voice; 2006 Mar; 20(1):2-17. PubMed ID: 15964740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.