These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1037 related articles for article (PubMed ID: 16321934)
1. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934 [TBL] [Abstract][Full Text] [Related]
2. TonB-dependent maltose transport by Caulobacter crescentus. Lohmiller S; Hantke K; Patzer SI; Braun V Microbiology (Reading); 2008 Jun; 154(Pt 6):1748-1754. PubMed ID: 18524929 [TBL] [Abstract][Full Text] [Related]
3. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. Eisenbeis S; Lohmiller S; Valdebenito M; Leicht S; Braun V J Bacteriol; 2008 Aug; 190(15):5230-8. PubMed ID: 18539735 [TBL] [Abstract][Full Text] [Related]
4. The role of the Escherichia coli lambda receptor in the transport of maltose and maltodextrins. Ferenci T; Boos W J Supramol Struct; 1980; 13(1):101-16. PubMed ID: 7003263 [TBL] [Abstract][Full Text] [Related]
5. Rate constants of sugar transport through two LamB mutants of Escherichia coli: comparison with wild-type maltoporin and LamB of Salmonella typhimurium. Jordy M; Andersen C; Schülein K; Ferenci T; Benz R J Mol Biol; 1996 Jun; 259(4):666-78. PubMed ID: 8683573 [TBL] [Abstract][Full Text] [Related]
6. The maltodextrin system of Escherichia coli: metabolism and transport. Dippel R; Boos W J Bacteriol; 2005 Dec; 187(24):8322-31. PubMed ID: 16321936 [TBL] [Abstract][Full Text] [Related]
7. Escherichia coli mutants impaired in maltodextrin transport. Wandersman C; Schwartz M; Ferenci T J Bacteriol; 1979 Oct; 140(1):1-13. PubMed ID: 387714 [TBL] [Abstract][Full Text] [Related]
8. In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli. Howard SP; Herrmann C; Stratilo CW; Braun V J Bacteriol; 2001 Oct; 183(20):5885-95. PubMed ID: 11566987 [TBL] [Abstract][Full Text] [Related]
9. The maltose-maltodextrin transport system of Escherichia coli. Shuman HA Ann Microbiol (Paris); 1982 Jan; 133A(1):153-9. PubMed ID: 7041738 [TBL] [Abstract][Full Text] [Related]
10. TonB-Dependent Heme/Hemoglobin Utilization by Caulobacter crescentus HutA. Balhesteros H; Shipelskiy Y; Long NJ; Majumdar A; Katz BB; Santos NM; Leaden L; Newton SM; Marques MV; Klebba PE J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28031282 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of OmpC porin mutants with altered pore properties. Misra R; Benson SA J Bacteriol; 1988 Feb; 170(2):528-33. PubMed ID: 2828311 [TBL] [Abstract][Full Text] [Related]
12. Maltose and maltodextrin transport in Escherichia coli. Wandersman C Ann Microbiol (Paris); 1982 Jan; 133A(1):161-3. PubMed ID: 7041739 [TBL] [Abstract][Full Text] [Related]
13. OmpW of Caulobacter crescentus Functions as an Outer Membrane Channel for Cations. Benz R; Jones MD; Younas F; Maier E; Modi N; Mentele R; Lottspeich F; Kleinekathöfer U; Smit J PLoS One; 2015; 10(11):e0143557. PubMed ID: 26606672 [TBL] [Abstract][Full Text] [Related]
14. [Escherichia coli phage receptors. Minor porins and proteins participating in the specific transport as phage receptors]. Likhacheva NA; Sineokiĭ SP Mol Gen Mikrobiol Virusol; 1989 Dec; (12):3-12. PubMed ID: 2561376 [TBL] [Abstract][Full Text] [Related]
15. SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus. Modrak SK; Melin ME; Bowers LM J Microbiol; 2018 Sep; 56(9):648-655. PubMed ID: 30054816 [TBL] [Abstract][Full Text] [Related]
16. The recognition of maltodextrins by Escherichia coli. Ferenci T Eur J Biochem; 1980 Jul; 108(2):631-6. PubMed ID: 6997044 [TBL] [Abstract][Full Text] [Related]
17. Cell envelope proteins involved in the transport of maltose and sn-glycerol-3-phosphate in Escherichia coli. Boos W J Cell Physiol; 1976 Dec; 89(4):529-41. PubMed ID: 795812 [TBL] [Abstract][Full Text] [Related]
18. Acarbose, a pseudooligosaccharide, is transported but not metabolized by the maltose-maltodextrin system of Escherichia coli. Brunkhorst C; Andersen C; Schneider E J Bacteriol; 1999 Apr; 181(8):2612-9. PubMed ID: 10198028 [TBL] [Abstract][Full Text] [Related]
19. Energy-coupled transport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB in vitro, and leucine 132 in the periplasmic region and aspartate 25 in the transmembrane region are important for ExbD activity. Braun V; Gaisser S; Herrmann C; Kampfenkel K; Killmann H; Traub I J Bacteriol; 1996 May; 178(10):2836-45. PubMed ID: 8631671 [TBL] [Abstract][Full Text] [Related]
20. Further genetic analysis of the C-terminal external loop region in Escherichia coli maltoporin. Klebba PE; Newton SM; Charbit A; Michel V; Perrin D; Hofnung M Res Microbiol; 1997 Jun; 148(5):375-87. PubMed ID: 9765816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]