These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1037 related articles for article (PubMed ID: 16321934)
21. Enterococcus faecalis Uses a Phosphotransferase System Permease and a Host Colonization-Related ABC Transporter for Maltodextrin Uptake. Sauvageot N; Mokhtari A; Joyet P; Budin-Verneuil A; Blancato VS; Repizo GD; Henry C; Pikis A; Thompson J; Magni C; Hartke A; Deutscher J J Bacteriol; 2017 May; 199(9):. PubMed ID: 28242718 [TBL] [Abstract][Full Text] [Related]
22. Permeability properties of Escherichia coli outer membrane containing, pore-forming proteins: comparison between lambda receptor protein and porin for saccharide permeation. Nakae T; Ishii J J Bacteriol; 1980 Jun; 142(3):735-40. PubMed ID: 6247333 [TBL] [Abstract][Full Text] [Related]
23. Reconstitution of maltose transport in malB and malA mutants of Escherichia coli. Brass JM Ann Microbiol (Paris); 1982 Jan; 133A(1):171-80. PubMed ID: 7041740 [TBL] [Abstract][Full Text] [Related]
24. A model of maltodextrin transport through the sugar-specific porin, LamB, based on deletion analysis. Klebba PE; Hofnung M; Charbit A EMBO J; 1994 Oct; 13(19):4670-5. PubMed ID: 7925308 [TBL] [Abstract][Full Text] [Related]
25. Aspects of maltose transport in Escherichia coli: established facts and educated guesses. Boos W Ann Microbiol (Paris); 1982 Jan; 133A(1):145-51. PubMed ID: 7041737 [TBL] [Abstract][Full Text] [Related]
26. Site-directed mutagenesis of the greasy slide aromatic residues within the LamB (maltoporin) channel of Escherichia coli: effect on ion and maltopentaose transport. Denker K; Orlik F; Schiffler B; Benz R J Mol Biol; 2005 Sep; 352(3):534-50. PubMed ID: 16095613 [TBL] [Abstract][Full Text] [Related]
27. Iron transport systems of Serratia marcescens. Angerer A; Klupp B; Braun V J Bacteriol; 1992 Feb; 174(4):1378-87. PubMed ID: 1531225 [TBL] [Abstract][Full Text] [Related]
28. Substrate specificity of the Escherichia coli maltodextrin transport system and its component proteins. Ferenci T; Muir M; Lee KS; Maris D Biochim Biophys Acta; 1986 Aug; 860(1):44-50. PubMed ID: 3524683 [TBL] [Abstract][Full Text] [Related]
29. Characterization of a genetic locus essential for maltose-maltotriose utilization in Staphylococcus xylosus. Egeter O; Brückner R J Bacteriol; 1995 May; 177(9):2408-15. PubMed ID: 7730272 [TBL] [Abstract][Full Text] [Related]
30. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Schauer K; Gouget B; Carrière M; Labigne A; de Reuse H Mol Microbiol; 2007 Feb; 63(4):1054-68. PubMed ID: 17238922 [TBL] [Abstract][Full Text] [Related]
31. Phage display reveals multiple contact sites between FhuA, an outer membrane receptor of Escherichia coli, and TonB. Carter DM; Gagnon JN; Damlaj M; Mandava S; Makowski L; Rodi DJ; Pawelek PD; Coulton JW J Mol Biol; 2006 Mar; 357(1):236-51. PubMed ID: 16414071 [TBL] [Abstract][Full Text] [Related]
32. Mutual inhibition of cobalamin and siderophore uptake systems suggests their competition for TonB function. Kadner RJ; Heller KJ J Bacteriol; 1995 Sep; 177(17):4829-35. PubMed ID: 7665457 [TBL] [Abstract][Full Text] [Related]
33. Two modes of ligand binding in maltose-binding protein of Escherichia coli. Functional significance in active transport. Hall JA; Ganesan AK; Chen J; Nikaido H J Biol Chem; 1997 Jul; 272(28):17615-22. PubMed ID: 9211910 [TBL] [Abstract][Full Text] [Related]
34. Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities. Joyet P; Mokhtari A; Riboulet-Bisson E; Blancato VS; Espariz M; Magni C; Hartke A; Deutscher J; Sauvageot N Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455338 [TBL] [Abstract][Full Text] [Related]
35. Identification of a new porin, RafY, encoded by raffinose plasmid pRSD2 of Escherichia coli. Ulmke C; Lengeler JW; Schmid K J Bacteriol; 1997 Sep; 179(18):5783-8. PubMed ID: 9294435 [TBL] [Abstract][Full Text] [Related]
36. The role of the maltodextrin-binding site in determining the transport properties of the LamB protein. Nakae T; Ishii J; Ferenci T J Biol Chem; 1986 Jan; 261(2):622-6. PubMed ID: 3510205 [TBL] [Abstract][Full Text] [Related]
37. Deletion and substitution analysis of the Escherichia coli TonB Q160 region. Vakharia-Rao H; Kastead KA; Savenkova MI; Bulathsinghala CM; Postle K J Bacteriol; 2007 Jul; 189(13):4662-70. PubMed ID: 17483231 [TBL] [Abstract][Full Text] [Related]
38. Quantification of known components of the Escherichia coli TonB energy transduction system: TonB, ExbB, ExbD and FepA. Higgs PI; Larsen RA; Postle K Mol Microbiol; 2002 Apr; 44(1):271-81. PubMed ID: 11967085 [TBL] [Abstract][Full Text] [Related]
39. Maltose and maltodextrin transport in the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose binding protein tolerant to low pH. Hülsmann A; Lurz R; Scheffel F; Schneider E J Bacteriol; 2000 Nov; 182(22):6292-301. PubMed ID: 11053372 [TBL] [Abstract][Full Text] [Related]
40. Site-directed mutagenesis of tyrosine 118 within the central constriction site of the LamB (maltoporin) channel of Escherichia coli. II. Effect on maltose and maltooligosaccharide binding kinetics. Orlik F; Andersen C; Benz R Biophys J; 2002 Jul; 83(1):309-21. PubMed ID: 12080122 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]