BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16321950)

  • 21. [Modification in de novo purine pathway for adenosine accumulation by Bacillus subtilis].
    Liu Y; He J; Xie X; Xu Q; Zhang C; Chen N
    Wei Sheng Wu Xue Bao; 2014 Jun; 54(6):641-7. PubMed ID: 25272812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene-enzyme relationships of the purine biosynthetic pathway in Bacillus subtilis.
    Saxild HH; Nygaard P
    Mol Gen Genet; 1988 Jan; 211(1):160-7. PubMed ID: 3125411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3.
    Hofemeister J; Conrad B; Adler B; Hofemeister B; Feesche J; Kucheryava N; Steinborn G; Franke P; Grammel N; Zwintscher A; Leenders F; Hitzeroth G; Vater J
    Mol Genet Genomics; 2004 Nov; 272(4):363-78. PubMed ID: 15480790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tn10 insertional mutations of Bacillus subtilis that block the biosynthesis of bacilysin.
    Yazgan A; Ozcengiz G; Marahiel MA
    Biochim Biophys Acta; 2001 Mar; 1518(1-2):87-94. PubMed ID: 11267663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis.
    Toya Y; Hirasawa T; Ishikawa S; Chumsakul O; Morimoto T; Liu S; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    Biosci Biotechnol Biochem; 2015; 79(12):2073-80. PubMed ID: 26120821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of transposon insertion mutants of Francisella tularensis tularensis strain Schu S4 deficient in intracellular replication in the hepatic cell line HepG2.
    Qin A; Mann BJ
    BMC Microbiol; 2006 Jul; 6():69. PubMed ID: 16879747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Mycobacterium tuberculosis purine biosynthetic pathway: isolation and characterization of the purC and purL genes.
    Jackson M; Berthet FX; Otal I; Rauzier J; Martin C; Gicquel B; Guilhot C
    Microbiology (Reading); 1996 Sep; 142 ( Pt 9)():2439-47. PubMed ID: 8828210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of eps genes from Bacillus subtilis in biofilm formation and swarming.
    Nagorska K; Ostrowski A; Hinc K; Holland IB; Obuchowski M
    J Appl Genet; 2010; 51(3):369-81. PubMed ID: 20720312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three non-aspartate amino acid mutations in the ComA Response regulator receiver motif severely decrease surfactin production, competence development and spore formation in Bacillus subtilis.
    Wang X; Luo C; Liu Y; Nie Y; Liu Y; Zhang R; Chen Z
    J Microbiol Biotechnol; 2010 Feb; 20(2):301-10. PubMed ID: 20208433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New inhibitors of colony spreading in Bacillus subtilis and Bacillus anthracis.
    Hao X; Nguyen T; Kearns DB; Arpin CC; Fall R; Sammakia T
    Bioorg Med Chem Lett; 2011 Sep; 21(18):5583-8. PubMed ID: 21784632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Bacillus subtilis mutants with carbon source-independent glutamate biosynthesis.
    Commichau FM; Wacker I; Schleider J; Blencke HM; Reif I; Tripal P; Stülke J
    J Mol Microbiol Biotechnol; 2007; 12(1-2):106-13. PubMed ID: 17183217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleotide sequence of 5' portion of srfA that contains the region required for competence establishment in Bacillus subtilus.
    Fuma S; Fujishima Y; Corbell N; D'Souza C; Nakano MM; Zuber P; Yamane K
    Nucleic Acids Res; 1993 Jan; 21(1):93-7. PubMed ID: 8441623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel locus essential for spreading of Cytophaga hutchinsonii colonies on agar.
    Ji X; Bai X; Li Z; Wang S; Guan Z; Lu X
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7317-24. PubMed ID: 23579728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of SpoVG in hemolysis caused by Bacillus subtilis.
    Pan X; Chen X; Su X; Feng Y; Tao Y; Dong Z
    Biochem Biophys Res Commun; 2014 Jan; 443(3):899-904. PubMed ID: 24361891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Genes Required for Swarming Motility in
    Sanchez S; Snider EV; Wang X; Kearns DB
    J Bacteriol; 2022 Jun; 204(6):e0008922. PubMed ID: 35638827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a Bacillus subtilis surfactin synthetase knockout and antimicrobial activity analysis.
    Liu H; Qu X; Gao L; Zhao S; Lu Z; Zhang C; Bie X
    J Biotechnol; 2016 Nov; 237():1-12. PubMed ID: 27576183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning of srfA operon from Bacillus subtilis C9 and its expression in E. coli.
    Lee YK; Yoon BD; Yoon JH; Lee SG; Song JJ; Kim JG; Oh HM; Kim HS
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):567-72. PubMed ID: 17268783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis.
    Lombardía E; Rovetto AJ; Arabolaza AL; Grau RR
    J Bacteriol; 2006 Jun; 188(12):4442-52. PubMed ID: 16740951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis.
    Atkinson MR; Fisher SH
    J Bacteriol; 1991 Jan; 173(1):23-7. PubMed ID: 1670935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of the K+ efflux activity of Bacillus subtilis YhaU by YhaT and the C-terminal region of YhaS.
    Fujisawa M; Wada Y; Ito M
    FEMS Microbiol Lett; 2004 Feb; 231(2):211-7. PubMed ID: 14987767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.