BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16321984)

  • 21. Canonical inhibitor-like interactions explain reactivity of alpha1-proteinase inhibitor Pittsburgh and antithrombin with proteinases.
    Dementiev A; Simonovic M; Volz K; Gettins PG
    J Biol Chem; 2003 Sep; 278(39):37881-7. PubMed ID: 12860985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The proteinase: mucus proteinase inhibitor binding stoichiometry.
    Boudier C; Bieth JG
    J Biol Chem; 1992 Mar; 267(7):4370-5. PubMed ID: 1537827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases.
    Ivanov D; Emonet C; Foata F; Affolter M; Delley M; Fisseha M; Blum-Sperisen S; Kochhar S; Arigoni F
    J Biol Chem; 2006 Jun; 281(25):17246-17252. PubMed ID: 16627467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition spectra of the human pancreatic endopeptidases.
    Mallory PA; Travis J
    Am J Clin Nutr; 1975 Aug; 28(8):823-30. PubMed ID: 1080008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short-lived protease serpin complexes: partial disruption of the rat trypsin active site.
    Liu L; Mushero N; Hedstrom L; Gershenson A
    Protein Sci; 2007 Nov; 16(11):2403-11. PubMed ID: 17962402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of an elastase-specific inhibitor elafin complexed with porcine pancreatic elastase determined at 1.9 A resolution.
    Tsunemi M; Matsuura Y; Sakakibara S; Katsube Y
    Biochemistry; 1996 Sep; 35(36):11570-6. PubMed ID: 8794736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific activity of alpha1proteinase inhibitor and alpha2macroglobulin in human serum: application to insulin-dependent diabetes mellitus.
    Bristow CL; Di Meo F; Arnold RR
    Clin Immunol Immunopathol; 1998 Dec; 89(3):247-59. PubMed ID: 9837695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of fluorescence resonance energy transfer to study serpin-proteinase interactions.
    Gettins PG; Olson ST
    Methods; 2004 Feb; 32(2):110-9. PubMed ID: 14698623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of a noncovalent serpin-proteinase complex involves no conformational change in the serpin. Use of 1H-15N HSQC NMR as a sensitive nonperturbing monitor of conformation.
    Peterson FC; Gordon NC; Gettins PG
    Biochemistry; 2000 Oct; 39(39):11884-92. PubMed ID: 11009600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of the P5 residue on alpha1-proteinase inhibitor mechanism.
    Chaillan-Huntington CE; Patston PA
    J Biol Chem; 1998 Feb; 273(8):4569-73. PubMed ID: 9468513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pH dependence of serpin-proteinase complex dissociation reveals a mechanism of complex stabilization involving inactive and active conformational states of the proteinase which are perturbable by calcium.
    Calugaru SV; Swanson R; Olson ST
    J Biol Chem; 2001 Aug; 276(35):32446-55. PubMed ID: 11404362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The molecular structure of the complex of Ascaris chymotrypsin/elastase inhibitor with porcine elastase.
    Huang K; Strynadka NC; Bernard VD; Peanasky RJ; James MN
    Structure; 1994 Jul; 2(7):679-89. PubMed ID: 7922044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Lys335 in the metastability and function of inhibitory serpins.
    Im H; Yu MH
    Protein Sci; 2000 May; 9(5):934-41. PubMed ID: 10850803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the pathogenesis of the adult respiratory distress syndrome.
    McGuire WW; Spragg RG; Cohen AB; Cochrane CG
    J Clin Invest; 1982 Mar; 69(3):543-53. PubMed ID: 7037851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resistance of cathepsin L compared to elastase to proteolysis when complexed with the serpin endopin 2C, and recovery of cathepsin L activity.
    Hwang SR; Stoka V; Turk V; Hook V
    Biochem Biophys Res Commun; 2006 Feb; 340(4):1238-43. PubMed ID: 16414353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different susceptibility of elastase inhibitors to inactivation by proteinases from Staphylococcus aureus and Pseudomonas aeruginosa.
    Sponer M; Nick HP; Schnebli HP
    Biol Chem Hoppe Seyler; 1991 Nov; 372(11):963-70. PubMed ID: 1686554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes.
    Olson ST; Bock PE; Kvassman J; Shore JD; Lawrence DA; Ginsburg D; Björk I
    J Biol Chem; 1995 Dec; 270(50):30007-17. PubMed ID: 8530403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms.
    Kaslik G; Westler WM; Gráf L; Markley JL
    Arch Biochem Biophys; 1999 Feb; 362(2):254-64. PubMed ID: 9989934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of neutrophil elastase by alpha1-protease inhibitor at the surface of human polymorphonuclear neutrophils.
    Korkmaz B; Attucci S; Jourdan ML; Juliano L; Gauthier F
    J Immunol; 2005 Sep; 175(5):3329-38. PubMed ID: 16116225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of porcine pancreatic elastase complexed with FR901277, a novel macrocyclic inhibitor of elastases, at 1.6 A resolution.
    Nakanishi I; Kinoshita T; Sato A; Tada T
    Biopolymers; 2000 Apr; 53(5):434-45. PubMed ID: 10738204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.