BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 16322491)

  • 1. Effects of somatosensory stimulation on use-dependent plasticity in chronic stroke.
    Sawaki L; Wu CW; Kaelin-Lang A; Cohen LG
    Stroke; 2006 Jan; 37(1):246-7. PubMed ID: 16322491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke.
    Wu CW; Seo HJ; Cohen LG
    Arch Phys Med Rehabil; 2006 Mar; 87(3):351-7. PubMed ID: 16500168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke.
    Celnik P; Paik NJ; Vandermeeren Y; Dimyan M; Cohen LG
    Stroke; 2009 May; 40(5):1764-71. PubMed ID: 19286579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does induction of plastic change in motor cortex improve leg function after stroke?
    Uy J; Ridding MC; Hillier S; Thompson PD; Miles TS
    Neurology; 2003 Oct; 61(7):982-4. PubMed ID: 14557574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke.
    Celnik P; Hummel F; Harris-Love M; Wolk R; Cohen LG
    Arch Phys Med Rehabil; 2007 Nov; 88(11):1369-76. PubMed ID: 17964875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke.
    Hummel F; Cohen LG
    Neurorehabil Neural Repair; 2005 Mar; 19(1):14-9. PubMed ID: 15673839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Home-based nerve stimulation to enhance effects of motor training in patients in the chronic phase after stroke: a proof-of-principle study.
    Dos Santos-Fontes RL; Ferreiro de Andrade KN; Sterr A; Conforto AB
    Neurorehabil Neural Repair; 2013; 27(6):483-90. PubMed ID: 23478167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke.
    Kim YH; You SH; Ko MH; Park JW; Lee KH; Jang SH; Yoo WK; Hallett M
    Stroke; 2006 Jun; 37(6):1471-6. PubMed ID: 16675743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of motor disability and spasticity in post-stroke after repetitive transcranial magnetic stimulation (rTMS).
    Málly J; Dinya E
    Brain Res Bull; 2008 Jul; 76(4):388-95. PubMed ID: 18502315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study.
    Cicinelli P; Pasqualetti P; Zaccagnini M; Traversa R; Oliveri M; Rossini PM
    Stroke; 2003 Nov; 34(11):2653-8. PubMed ID: 14551397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory stimulation augments the effects of massed practice training in persons with tetraplegia.
    Beekhuizen KS; Field-Fote EC
    Arch Phys Med Rehabil; 2008 Apr; 89(4):602-8. PubMed ID: 18373988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of interhemispheric interactions on motor function in chronic stroke.
    Murase N; Duque J; Mazzocchio R; Cohen LG
    Ann Neurol; 2004 Mar; 55(3):400-9. PubMed ID: 14991818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased pinch strength in acute and subacute stroke patients after simultaneous median and ulnar sensory stimulation.
    Klaiput A; Kitisomprayoonkul W
    Neurorehabil Neural Repair; 2009 May; 23(4):351-6. PubMed ID: 18981187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of sustained excitability of the leg motor cortex after transcranial magnetic stimulation in associative plasticity.
    Roy FD; Norton JA; Gorassini MA
    J Neurophysiol; 2007 Aug; 98(2):657-67. PubMed ID: 17537908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation.
    Shulga A; Lioumis P; Kirveskari E; Savolainen S; Mäkelä JP; Ylinen A
    J Neurosci Methods; 2015 Mar; 242():112-7. PubMed ID: 25597909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability of TMS motor evoked potentials in quadriceps of subjects with chronic hemiparesis after stroke.
    Wheaton LA; Villagra F; Hanley DF; Macko RF; Forrester LW
    J Neurol Sci; 2009 Jan; 276(1-2):115-7. PubMed ID: 18945450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor cortex excitability and connectivity in chronic stroke: a multimodal model of functional reorganization.
    Volz LJ; Sarfeld AS; Diekhoff S; Rehme AK; Pool EM; Eickhoff SB; Fink GR; Grefkes C
    Brain Struct Funct; 2015 Mar; 220(2):1093-107. PubMed ID: 24415059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reorganization of motor execution rather than preparation in poststroke hemiparesis.
    Wiese H; Stude P; Sarge R; Nebel K; Diener HC; Keidel M
    Stroke; 2005 Jul; 36(7):1474-9. PubMed ID: 15947274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disinhibition of the premotor cortex contributes to a maladaptive change in the affected hand after stroke.
    Takeuchi N; Tada T; Chuma T; Matsuo Y; Ikoma K
    Stroke; 2007 May; 38(5):1551-6. PubMed ID: 17363726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand.
    Nowak DA; Grefkes C; Ameli M; Fink GR
    Neurorehabil Neural Repair; 2009 Sep; 23(7):641-56. PubMed ID: 19531606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.