These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16322584)

  • 1. The kinetic behavior of insulin fibrillation is determined by heterogeneous nucleation pathways.
    Librizzi F; Rischel C
    Protein Sci; 2005 Dec; 14(12):3129-34. PubMed ID: 16322584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of confinement on insulin amyloid fibrils formation.
    Librizzi F; Foderà V; Vetri V; Lo Presti C; Leone M
    Eur Biophys J; 2007 Sep; 36(7):711-5. PubMed ID: 17340097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism.
    Nielsen L; Khurana R; Coats A; Frokjaer S; Brange J; Vyas S; Uversky VN; Fink AL
    Biochemistry; 2001 May; 40(20):6036-46. PubMed ID: 11352739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid gels: precocious appearance of elastic properties during the formation of an insulin fibrillar network.
    Manno M; Giacomazza D; Newman J; Martorana V; San Biagio PL
    Langmuir; 2010 Feb; 26(3):1424-6. PubMed ID: 19916492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the pressure effect on nucleation processes of amyloidogenic proteins.
    Gruzielanek S; Zhai Y; Winter R
    Chemphyschem; 2010 Jun; 11(9):2016-20. PubMed ID: 20379982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Investigation of the kinetics of insulin amyloid fibrils formation].
    Sulatskaia AI; Volova EA; Komissarchik IaIu; Snigirevskaia ES; Maskevich AA; Drobchenko EA; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2013; 55(11):809-14. PubMed ID: 25509136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of pathway of insulin fibrillation by a small molecule helix inducer 2,2,2-trifluoroethanol.
    Banerjee V; Das KP
    Colloids Surf B Biointerfaces; 2012 Apr; 92():142-50. PubMed ID: 22178183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro.
    Rogers SS; Krebs MR; Bromley EH; van der Linden E; Donald AM
    Biophys J; 2006 Feb; 90(3):1043-54. PubMed ID: 16272436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent insulin oligomer reaction pathway prior to fibril formation: cooling and seeding.
    Sorci M; Grassucci RA; Hahn I; Frank J; Belfort G
    Proteins; 2009 Oct; 77(1):62-73. PubMed ID: 19408310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering the role of premicellar and micellar concentrations of sodium dodecyl benzenesulfonate surfactant in insulin fibrillation at pH 2.0.
    Khan JM; Malik A; Sen P; Ahmad A; Ahmed A; Atiya A
    Int J Biol Macromol; 2020 Apr; 148():880-886. PubMed ID: 31982528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation kinetics of insulin-based amyloid gels and the effect of added metalloporphyrins.
    Pasternack RF; Gibbs EJ; Sibley S; Woodard L; Hutchinson P; Genereux J; Kristian K
    Biophys J; 2006 Feb; 90(3):1033-42. PubMed ID: 16272434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycerol inhibits the primary pathways and transforms the secondary pathway of insulin aggregation.
    Saha S; Deep S
    Phys Chem Chem Phys; 2016 Jul; 18(28):18934-48. PubMed ID: 27353748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absolute correlation between lag time and growth rate in the spontaneous formation of several amyloid-like aggregates and fibrils.
    Fändrich M
    J Mol Biol; 2007 Feb; 365(5):1266-70. PubMed ID: 17141269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain.
    Zurdo J; Guijarro JI; Jiménez JL; Saibil HR; Dobson CM
    J Mol Biol; 2001 Aug; 311(2):325-40. PubMed ID: 11478864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation.
    Foderà V; Cataldo S; Librizzi F; Pignataro B; Spiccia P; Leone M
    J Phys Chem B; 2009 Aug; 113(31):10830-7. PubMed ID: 19588943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin amyloid fibrillation at above 100 degrees C: new insights into protein folding under extreme temperatures.
    Arora A; Ha C; Park CB
    Protein Sci; 2004 Sep; 13(9):2429-36. PubMed ID: 15295111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-inhibition of insulin amyloid-like aggregation.
    Ziaunys M; Sneideris T; Smirnovas V
    Phys Chem Chem Phys; 2018 Nov; 20(43):27638-27645. PubMed ID: 30374505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin and Lispro Insulin: What is Common and Different in their Behavior?
    Selivanova OM; Suvorina MY; Surin AK; Dovidchenko NV; Galzitskaya OV
    Curr Protein Pept Sci; 2017; 18(1):57-64. PubMed ID: 27226198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvational tuning of the unfolding, aggregation and amyloidogenesis of insulin.
    Grudzielanek S; Jansen R; Winter R
    J Mol Biol; 2005 Aug; 351(4):879-94. PubMed ID: 16051271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin fibril nucleation: the role of prefibrillar aggregates.
    Smith MI; Sharp JS; Roberts CJ
    Biophys J; 2008 Oct; 95(7):3400-6. PubMed ID: 18599629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.