These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 163226)
21. A novel gluconeogenic route enables efficient use of erythritol in zoonotic Lázaro-Antón L; Veiga-da-Cunha M; Elizalde-Bielsa A; Chevalier N; Conde-Álvarez R; Iriarte M; Letesson JJ; Moriyón I; Van Schaftingen E; Zúñiga-Ripa A Front Vet Sci; 2024; 11():1328293. PubMed ID: 38601913 [TBL] [Abstract][Full Text] [Related]
22. Erythritol metabolism by Propionibacterium pentosaceum. The role of L-erythrulose 1-phosphate. Wawszkiewicz EJ Biochemistry; 1968 Feb; 7(2):683-7. PubMed ID: 4296190 [No Abstract] [Full Text] [Related]
23. Catabolism of D-gluaric acid to alpha-ketoglutarate in Bacillus megaterium. Sharma BS; Blumenthal HJ J Bacteriol; 1973 Dec; 116(3):1346-54. PubMed ID: 4148097 [TBL] [Abstract][Full Text] [Related]
24. Production of the siderophore 2,3-dihydroxybenzoic acid is required for wild-type growth of Brucella abortus in the presence of erythritol under low-iron conditions in vitro. Bellaire BH; Elzer PH; Baldwin CL; Roop RM Infect Immun; 2003 May; 71(5):2927-832. PubMed ID: 12704172 [TBL] [Abstract][Full Text] [Related]
25. The Manganese-Dependent Pyruvate Kinase PykM Is Required for Wild-Type Glucose Utilization by Brucella abortus 2308 and Its Virulence in C57BL/6 Mice. Pitzer JE; Zeczycki TN; Baumgartner JE; Martin DW; Roop RM J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30275278 [TBL] [Abstract][Full Text] [Related]
26. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814 [TBL] [Abstract][Full Text] [Related]
27. New developments in oxidative fermentation. Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142 [TBL] [Abstract][Full Text] [Related]
28. The glucose catabolism of the genus Brucella. II. Cell-free studies with B. abortus (S-19). Robertson DC; McCullough WG Arch Biochem Biophys; 1968 Sep; 127(1):445-56. PubMed ID: 4235225 [No Abstract] [Full Text] [Related]
29. Characterization of Brucella abortus strain 19 isolated from human and bovine tissues and fluids. Meyer ME Am J Vet Res; 1985 Apr; 46(4):902-4. PubMed ID: 3925824 [TBL] [Abstract][Full Text] [Related]
30. Characterization and inactivation of the membrane-bound polyol dehydrogenase in Gluconobacter oxydans DSM 7145 reveals a role in meso-erythritol oxidation. Voss J; Ehrenreich A; Liebl W Microbiology (Reading); 2010 Jun; 156(Pt 6):1890-1899. PubMed ID: 20223802 [TBL] [Abstract][Full Text] [Related]
31. The Brucella abortus vaccine strain B19 carries a deletion in the erythritol catabolic genes. Sangari FJ; García-Lobo JM; Agüero J FEMS Microbiol Lett; 1994 Sep; 121(3):337-42. PubMed ID: 7926690 [TBL] [Abstract][Full Text] [Related]
33. Oxidation of C1 Compounds by Particulate fractions from Methylococcus capsulatus: distribution and properties of methane-dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase). Ribbons DW J Bacteriol; 1975 Jun; 122(3):1351-63. PubMed ID: 238946 [TBL] [Abstract][Full Text] [Related]
34. Effect of entF deletion on iron acquisition and erythritol metabolism by Brucella abortus 2308. Jain N; Rodriguez AC; Kimsawatde G; Seleem MN; Boyle SM; Sriranganathan N FEMS Microbiol Lett; 2011 Mar; 316(1):1-6. PubMed ID: 21204922 [TBL] [Abstract][Full Text] [Related]
35. The route of ethanol formation in Zymomonas mobilis. Dawes EA; Ribbons DW; Large PJ Biochem J; 1966 Mar; 98(3):795-803. PubMed ID: 4287842 [TBL] [Abstract][Full Text] [Related]
36. Flavensomycin, an inhibitor of enzyme reactions involving hydrogen transfer. Gottlieb D; Inoue Y J Bacteriol; 1967 Oct; 94(4):844-9. PubMed ID: 4383133 [TBL] [Abstract][Full Text] [Related]
37. Production of L-erythrose via L-erythrulose from erythritol using microbial and enzymatic reactions. Mizanur RM; Takeshita K; Moshino H; Takada G; Izumori K J Biosci Bioeng; 2001; 92(3):237-41. PubMed ID: 16233090 [TBL] [Abstract][Full Text] [Related]
38. Biochemical characterization of gapB-encoded erythrose 4-phosphate dehydrogenase of Escherichia coli K-12 and its possible role in pyridoxal 5'-phosphate biosynthesis. Zhao G; Pease AJ; Bharani N; Winkler ME J Bacteriol; 1995 May; 177(10):2804-12. PubMed ID: 7751290 [TBL] [Abstract][Full Text] [Related]
39. Two malic enzymes in Pseudomonas aeruginosa. Eyzaguirre J; Cornwell E; Borie G; Ramírez B J Bacteriol; 1973 Oct; 116(1):215-21. PubMed ID: 4147645 [TBL] [Abstract][Full Text] [Related]
40. Methylerythritol phosphate pathway to isoprenoids: kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum. Singh VK; Ghosh I FEBS Lett; 2013 Sep; 587(17):2806-17. PubMed ID: 23816706 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]