These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 16322651)
1. Atomic clusters and ion-cyclotron-resonance mass spectrometry: a fruitful combination. Schweikhard L; Blaum K; Herlert A; Marx G Eur J Mass Spectrom (Chichester); 2005; 11(5):457-68. PubMed ID: 16322651 [TBL] [Abstract][Full Text] [Related]
2. Cluster calibration in mass spectrometry: laser desorption/ionization studies of atomic clusters and an application in precision mass spectrometry. Blaum K; Herlert A; Huber G; Kluge HJ; Maul J; Schweikhard L Anal Bioanal Chem; 2003 Dec; 377(7-8):1133-9. PubMed ID: 14647934 [TBL] [Abstract][Full Text] [Related]
3. Tandem mass spectrometry in quadrupole ion trap and ion cyclotron resonance mass spectrometers. Payne AH; Glish GL Methods Enzymol; 2005; 402():109-48. PubMed ID: 16401508 [TBL] [Abstract][Full Text] [Related]
4. Quartz resonators for penning traps toward mass spectrometry on the heaviest ions. Lohse S; Berrocal J; Böhland S; van de Laar J; Block M; Chenmarev S; Düllmann CE; Nagy S; Ramírez JG; Rodríguez D Rev Sci Instrum; 2020 Sep; 91(9):093202. PubMed ID: 33003790 [TBL] [Abstract][Full Text] [Related]
5. Linear ion traps in mass spectrometry. Douglas DJ; Frank AJ; Mao D Mass Spectrom Rev; 2005; 24(1):1-29. PubMed ID: 15389865 [TBL] [Abstract][Full Text] [Related]
6. Monitoring the dissolution process of metals in the gas phase: reactions of nanoscale Al and Ga metal atom clusters and their relationship to similar metalloid clusters. Burgert R; Schnöckel H Chem Commun (Camb); 2008 May; (18):2075-89. PubMed ID: 18438480 [TBL] [Abstract][Full Text] [Related]
7. Ramsey method of separated oscillatory fields for high-precision penning trap mass spectrometry. George S; Baruah S; Blank B; Blaum K; Breitenfeldt M; Hager U; Herfurth F; Herlert A; Kellerbauer A; Kluge HJ; Kretzschmar M; Lunney D; Savreux R; Schwarz S; Schweikhard L; Yazidjian C Phys Rev Lett; 2007 Apr; 98(16):162501. PubMed ID: 17501414 [TBL] [Abstract][Full Text] [Related]
8. High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 Tesla. Schaub TM; Hendrickson CL; Horning S; Quinn JP; Senko MW; Marshall AG Anal Chem; 2008 Jun; 80(11):3985-90. PubMed ID: 18465882 [TBL] [Abstract][Full Text] [Related]
9. Unintended parametric ejection of ions from an ion cyclotron resonance trap by two- electrode axialization. Martinez F; Herlert A; Marx G; Schweikhard L; Walsh N Eur J Mass Spectrom (Chichester); 2009; 15(2):283-91. PubMed ID: 19423913 [TBL] [Abstract][Full Text] [Related]
10. Four decades of joy in mass spectrometry. Nibbering NM Mass Spectrom Rev; 2006; 25(6):962-1017. PubMed ID: 16736509 [TBL] [Abstract][Full Text] [Related]
11. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions. O'Hair RA; Rijs NJ Acc Chem Res; 2015 Feb; 48(2):329-40. PubMed ID: 25594228 [TBL] [Abstract][Full Text] [Related]
12. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Perry RH; Cooks RG; Noll RJ Mass Spectrom Rev; 2008; 27(6):661-99. PubMed ID: 18683895 [TBL] [Abstract][Full Text] [Related]
13. Observation of increased ion cyclotron resonance signal duration through electric field perturbations. Kaiser NK; Bruce JE Anal Chem; 2005 Sep; 77(18):5973-81. PubMed ID: 16159130 [TBL] [Abstract][Full Text] [Related]
14. Impact of ion cloud densities on the measurement of relative ion abundances in Fourier transform ion cyclotron resonance mass spectrometry: experimental observations of coulombically induced cyclotron radius perturbations and ion cloud dephasing rates. Gordon EF; Muddiman DC J Mass Spectrom; 2001 Feb; 36(2):195-203. PubMed ID: 11288202 [TBL] [Abstract][Full Text] [Related]
15. Dipole moment of PH+ and the atomic masses of 28Si, 31P by comparing cyclotron frequencies of two ions simultaneously trapped in a penning trap. Redshaw M; McDaniel J; Myers EG Phys Rev Lett; 2008 Mar; 100(9):093002. PubMed ID: 18352703 [TBL] [Abstract][Full Text] [Related]
16. A new and sensitive on-line liquid chromatography/mass spectrometric approach for top-down protein analysis: the comprehensive analysis of human growth hormone in an E. coli lysate using a hybrid linear ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Wu SL; Jardine I; Hancock WS; Karger BL Rapid Commun Mass Spectrom; 2004; 18(19):2201-7. PubMed ID: 15384137 [TBL] [Abstract][Full Text] [Related]
17. C60 secondary ion Fourier transform ion cyclotron resonance mass spectrometry. Smith DF; Robinson EW; Tolmachev AV; Heeren RM; Paša-Tolić L Anal Chem; 2011 Dec; 83(24):9552-6. PubMed ID: 22060180 [TBL] [Abstract][Full Text] [Related]
18. Mass and lifetime measurements of exotic nuclei in storage rings. Franzke B; Geissel H; Münzenberg G Mass Spectrom Rev; 2008; 27(5):428-69. PubMed ID: 18636527 [TBL] [Abstract][Full Text] [Related]
19. High-mass cluster ions of ionic liquids in positive-ion and negative-ion DART-MS and their application for wide-range mass calibrations. Gross JH Anal Bioanal Chem; 2014 May; 406(12):2853-62. PubMed ID: 24633511 [TBL] [Abstract][Full Text] [Related]
20. Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology. Barrow MP; Burkitt WI; Derrick PJ Analyst; 2005 Jan; 130(1):18-28. PubMed ID: 15614347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]