BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16322984)

  • 21. Transport pathways--proton motive force interrelationship in durum wheat mitochondria.
    Trono D; Laus MN; Soccio M; Pastore D
    Int J Mol Sci; 2014 May; 15(5):8186-215. PubMed ID: 24821541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism.
    Woodrow P; Ciarmiello LF; Annunziata MG; Pacifico S; Iannuzzi F; Mirto A; D'Amelia L; Dell'Aversana E; Piccolella S; Fuggi A; Carillo P
    Physiol Plant; 2017 Mar; 159(3):290-312. PubMed ID: 27653956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutamine transport in normal and acidotic rat kidney mitochondria.
    Atlante A; Passarella S; Minervini GM; Quagliariello E
    Arch Biochem Biophys; 1994 Dec; 315(2):369-81. PubMed ID: 7986080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium.
    Zhang M; Huang H; Dai S
    Gene; 2014 Mar; 537(2):203-13. PubMed ID: 24434369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation.
    Harris NS; Taylor GJ
    BMC Plant Biol; 2004 Apr; 4():4. PubMed ID: 15084224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial involvement to methylglyoxal detoxification: D-Lactate/Malate antiporter in Saccharomyces cerevisiae.
    Pallotta ML
    Antonie Van Leeuwenhoek; 2012 Jun; 102(1):163-75. PubMed ID: 22460278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression in mitochondrial electron transport is the prime cause behind stress induced proline accumulation.
    Alia ; Saradhi PP
    Biochem Biophys Res Commun; 1993 May; 193(1):54-8. PubMed ID: 8503937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proline metabolism and transport in plant development.
    Lehmann S; Funck D; Szabados L; Rentsch D
    Amino Acids; 2010 Oct; 39(4):949-62. PubMed ID: 20204435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings.
    Grabelnych OI; Borovik OA; Tauson EL; Pobezhimova TP; Katyshev AI; Pavlovskaya NS; Koroleva NA; Lyubushkina IV; Bashmakov VY; Popov VN; Borovskii GB; Voinikov VK
    Biochemistry (Mosc); 2014 Jun; 79(6):506-19. PubMed ID: 25100008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The existence of the K(+) channel in plant mitochondria.
    Pastore D; Stoppelli MC; Di Fonzo N; Passarella S
    J Biol Chem; 1999 Sep; 274(38):26683-90. PubMed ID: 10480870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of the plant mitochondrial potassium channel by free fatty acids and acyl-CoA esters: a possible defence mechanism in the response to hyperosmotic stress.
    Laus MN; Soccio M; Trono D; Liberatore MT; Pastore D
    J Exp Bot; 2011 Jan; 62(1):141-54. PubMed ID: 20801915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carrier-mediated transport controls hydroxyproline catabolism in heart mitochondria from spontaneously hypertensive rat.
    Atlante A; Seccia TM; Marra E; Minervini GM; Vulpis V; Pirrelli A; Passarella S
    FEBS Lett; 1996 Nov; 396(2-3):279-84. PubMed ID: 8915003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative analysis of physio-biochemical responses to cold stress in tetraploid and hexaploid wheat.
    Nejadsadeghi L; Maali-Amiri R; Zeinali H; Ramezanpour S; Sadeghzade B
    Cell Biochem Biophys; 2014 Sep; 70(1):399-408. PubMed ID: 24691928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria.
    Palmieri L; Pardo B; Lasorsa FM; del Arco A; Kobayashi K; Iijima M; Runswick MJ; Walker JE; Saheki T; Satrústegui J; Palmieri F
    EMBO J; 2001 Sep; 20(18):5060-9. PubMed ID: 11566871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of proline transport in Escherichia coli K12. I. Effect of a membrane potential on the kinetics of 2H+/proline symport in cytoplasmic membrane vesicles.
    Mogi T; Anraku Y
    J Biol Chem; 1984 Jun; 259(12):7791-6. PubMed ID: 6376492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles of K+, H+, H2O, and DeltaPsi in solute transport mediated by major facilitator superfamily members ProP and LacY.
    Culham DE; Romantsov T; Wood JM
    Biochemistry; 2008 Aug; 47(31):8176-85. PubMed ID: 18620422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The regulation of OXPHOS by extramitochondrial calcium.
    Gellerich FN; Gizatullina Z; Trumbeckaite S; Nguyen HP; Pallas T; Arandarcikaite O; Vielhaber S; Seppet E; Striggow F
    Biochim Biophys Acta; 2010; 1797(6-7):1018-27. PubMed ID: 20144582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of glutamate efflux in rat liver mitochondria.
    Hoek JB; Coll KE; Williamson JR
    J Biol Chem; 1983 Jan; 258(1):54-8. PubMed ID: 6129254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SSR Markers Associated with Proline in Drought Tolerant Wheat Germplasm.
    Iqbal MJ; Maqsood Y; Abdin ZU; Manzoor A; Hassan M; Jamil A
    Appl Biochem Biotechnol; 2016 Mar; 178(5):1042-52. PubMed ID: 26637362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of the ADP/ATP and aspartate/glutamate antiporters in the uncoupling effect of fatty acids, lauryl sulfate, and 2, 4-dinitrophenol in liver mitochondria.
    Samartsev VN; Markova OV; Zeldi IP; Smirnov AV
    Biochemistry (Mosc); 1999 Aug; 64(8):901-11. PubMed ID: 10498806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.