BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16322986)

  • 1. Drought effects on fine-root and ectomycorrhizal-root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico.
    Valdés M; Asbjornsen H; Gómez-Cárdenas M; Juárez M; Vogt KA
    Mycorrhiza; 2006 Mar; 16(2):117-124. PubMed ID: 16322986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of ectomycorrhizal fungal exposure on nursery-raised Pinus sylvestris seedlings: plant transpiration under short-term drought, root morphology and plant biomass.
    De Quesada G; Xu J; Salmon Y; Lintunen A; Poque S; Himanen K; Heinonsalo J
    Tree Physiol; 2024 Apr; 44(4):. PubMed ID: 38470306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.
    Bakker MR; Jolicoeur E; Trichet P; Augusto L; Plassard C; Guinberteau J; Loustau D
    Tree Physiol; 2009 Feb; 29(2):229-38. PubMed ID: 19203948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectomycorrhizal responses to organic and inorganic nitrogen sources when associating with two host species.
    Avolio ML; Tuininga AR; Lewis JD; Marchese M
    Mycol Res; 2009 Aug; 113(Pt 8):897-907. PubMed ID: 19465124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition?
    Koide RT; Fernandez CW; Peoples MS
    New Phytol; 2011 Jul; 191(2):508-514. PubMed ID: 21418224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectomycorrhizal root development in wet Alder carr forests in response to desiccation and eutrophication.
    Baar J; Bastiaans T; van de Coevering MA; Roelofs JG
    Mycorrhiza; 2002 Jun; 12(3):147-51. PubMed ID: 12072985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas.
    Onwuchekwa NE; Zwiazek JJ; Quoreshi A; Khasa DP
    Mycorrhiza; 2014 Aug; 24(6):431-41. PubMed ID: 24424508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for mutualist limitation: the impacts of conspecific density on the mycorrhizal inoculum potential of woodland soils.
    Haskins KE; Gehring CA
    Oecologia; 2005 Aug; 145(1):123-31. PubMed ID: 15891858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial patterns of ectomycorrhizal fungal inoculum in arbuscular mycorrhizal barrens communities: implications for controlling invasion by Pinus virginiana.
    Thiet RK; Boerner REJ
    Mycorrhiza; 2007 Sep; 17(6):507-517. PubMed ID: 17356853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context-dependent benefits of forest soil addition on Aleppo pine seedling performance under drought and grass competition.
    Herol L; Avidar M; Yirmiahu S; Zach YY; Klein T; Shemesh H; Livne-Luzon S
    Mycorrhiza; 2024 Jun; 34(3):217-227. PubMed ID: 38762648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of co-colonising ectomycorrhizal fungi on mycorrhizal colonisation and sporocarp formation in Laccaria japonica colonising seedlings of Pinus densiflora.
    Zhang S; Vaario LM; Xia Y; Matsushita N; Geng Q; Tsuruta M; Kurokochi H; Lian C
    Mycorrhiza; 2019 May; 29(3):207-218. PubMed ID: 30953171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests.
    Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P
    Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus source alters host plant response to ectomycorrhizal diversity.
    Baxter JW; Dighton J
    Mycorrhiza; 2005 Nov; 15(7):513-23. PubMed ID: 15809869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest.
    Taylor BN; Strand AE; Cooper ER; Beidler KV; Schönholz M; Pritchard SG
    Tree Physiol; 2014 Sep; 34(9):955-65. PubMed ID: 25056092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controls of fine root dynamics across a gradient of gap sizes in a pine woodland.
    Jones RH; Mitchell RJ; Stevens G; Pecot S
    Oecologia; 2003 Jan; 134(1):132-43. PubMed ID: 12647190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of excessive Cu on photosynthesis and growth in ectomycorrhizal Pinus sylvestris seedlings.
    Huang Y; Tao S
    J Environ Sci (China); 2004; 16(3):414-9. PubMed ID: 15272714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine root biomass and production in Scots pine stands in relation to stand age.
    Makkonen K; Helmisaari HS
    Tree Physiol; 2001 Feb; 21(2-3):193-8. PubMed ID: 11303650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thuja plicata exclusion in ectomycorrhiza-dominated forests: testing the role of inoculum potential of arbuscular mycorrhizal fungi.
    Weber A; Karst J; Gilbert B; Kimmins JP
    Oecologia; 2005 Mar; 143(1):148-56. PubMed ID: 15583941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.
    Garcia MO; Smith JE; Luoma DL; Jones MD
    Mycorrhiza; 2016 May; 26(4):275-86. PubMed ID: 26547440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectomycorrhizal fungal biomass in roots and uptake of P from apatite by Pinus sylvestris seedlings growing in forest soil with and without wood ash amendment.
    Wallander H; Fossum A; Rosengren U; Jones H
    Mycorrhiza; 2005 Mar; 15(2):143-8. PubMed ID: 15221578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.