These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16322997)

  • 1. Auditory brainstem responses to airborne sounds in the aquatic frog Xenopus laevis: correlation with middle ear characteristics.
    Katbamna B; Brown JA; Collard M; Ide CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Apr; 192(4):381-7. PubMed ID: 16322997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysics of underwater hearing in the clawed frog, Xenopus laevis.
    Christensen-Dalsgaard J; Elepfandt A
    J Comp Physiol A; 1995 Mar; 176(3):317-24. PubMed ID: 7707269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans.
    Christensen-Dalsgaard J; Brandt C; Willis KL; Christensen CB; Ketten D; Edds-Walton P; Fay RR; Madsen PT; Carr CE
    Proc Biol Sci; 2012 Jul; 279(1739):2816-24. PubMed ID: 22438494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Better late than never: effective air-borne hearing of toads delayed by late maturation of the tympanic middle ear structures.
    Womack MC; Christensen-Dalsgaard J; Hoke KL
    J Exp Biol; 2016 Oct; 219(Pt 20):3246-3252. PubMed ID: 27520654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of the middle ear and auditory sensitivity in the Natterjack toad (Epidalea calamita).
    Lauridsen TB; Christensen-Dalsgaard J
    J Exp Biol; 2022 Nov; 225(21):. PubMed ID: 36268787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distortion product otoacoustic emissions in frogs: correlation with middle and inner ear properties.
    van Dijk P; Mason MJ; Narins PM
    Hear Res; 2002 Nov; 173(1-2):100-8. PubMed ID: 12372639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aroclor 1254 impairs the hearing ability of Xenopus laevis.
    Katbamna B; Langerveld AJ; Ide CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Sep; 192(9):971-83. PubMed ID: 16703389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery from tympanic membrane perforation: Effects on membrane thickness, auditory thresholds, and middle ear transmission.
    Cai L; Stomackin G; Perez NM; Lin X; Jung TT; Dong W
    Hear Res; 2019 Dec; 384():107813. PubMed ID: 31655347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantation of the Auditory Nerve via the Middle Ear Cavity in Rats with Partial Hearing Preservation.
    Guigou C; Leterme G; Pasquis B; Martin L; Tourrel G; Bretillon L; Bozorg Grayeli A
    Audiol Neurootol; 2016; 21(2):98-104. PubMed ID: 27010792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.
    Bergin MJ; Bird PA; Vlajkovic SM; Thorne PR
    Hear Res; 2015 Dec; 330(Pt A):147-54. PubMed ID: 26493491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of the middle ear in neonatal chinchillas II. Two weeks to adulthood.
    Hsu RW; Margolis RH; Schachern PA; Javel E
    Acta Otolaryngol; 2001 Sep; 121(6):679-88. PubMed ID: 11678166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory evoked potentials from medulla and midbrain in the clawed frog, Xenopus laevis laevis.
    Bibikov NG; Elepfandt A
    Hear Res; 2005 Jun; 204(1-2):29-36. PubMed ID: 15925189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inner Ear Excitation in Normal and Postmastoidectomy Participants by Fluid Stimulation in the Absence of Air- and Bone-Conduction Mechanisms.
    Ronen O; Geal-Dor M; Kaufmann-Yehezkely M; Perez R; Chordekar S; Adelman C; Sohmer H
    J Am Acad Audiol; 2017 Feb; 28(2):152-160. PubMed ID: 28240982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory sensitivity and tympanic middle ear in a vocal and a non-vocal frog.
    Zhao L; Zhang M; Qin Y; Wang T; Zhai X; Cui J; Wang J
    Hear Res; 2024 Mar; 444():108970. PubMed ID: 38367458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of middle ear function in young children: clinical guidelines for the use of 226- and 1,000-Hz tympanometry.
    Alaerts J; Luts H; Wouters J
    Otol Neurotol; 2007 Sep; 28(6):727-32. PubMed ID: 17948353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the degree of hearing loss using click auditory brainstem response in babies referred from newborn hearing screening.
    Baldwin M; Watkin P
    Ear Hear; 2013; 34(3):361-9. PubMed ID: 23340456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between auditory sensitivity and vocalization in anabantoid fishes.
    Ladich F; Yan HY
    J Comp Physiol A; 1998 Jun; 182(6):737-46. PubMed ID: 9631554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STRUCTURE AND FUNCTION OF THE MIDDLE EAR APPARATUS OF THE AQUATIC FROG, XENOPUS LAEVIS.
    Mason M; Wang M; Narins P
    Proc Inst Acoust; 2009 Jan; 31():13-21. PubMed ID: 20953303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seismic sensitivity and bone conduction mechanisms enable extratympanic hearing in salamanders.
    Capshaw G; Soares D; Christensen-Dalsgaard J; Carr CE
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33161383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.