These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 16323785)
21. Kinetic and mechanistic reactivity. Isoprene impact on ozone levels in an urban area near Tijuca Forest, Rio de Janeiro. da Silva CM; da Silva LL; Corrêa SM; Arbilla G Bull Environ Contam Toxicol; 2016 Dec; 97(6):781-785. PubMed ID: 27738711 [TBL] [Abstract][Full Text] [Related]
22. Potential Factors Contributing to Ozone Production in AQUAS-Kyoto Campaign in Summer 2020: Natural Source-Related Missing OH Reactivity and Heterogeneous HO Li J; Kohno N; Sakamoto Y; Pham HG; Murano K; Sato K; Nakayama T; Kajii Y Environ Sci Technol; 2022 Sep; 56(18):12926-12936. PubMed ID: 36069610 [TBL] [Abstract][Full Text] [Related]
23. Measurement and modelling of air pollution and atmospheric chemistry in the U.K. West Midlands conurbation: overview of the PUMA Consortium project. Harrison RM; Yin J; Tilling RM; Cai X; Seakins PW; Hopkins JR; Lansley DL; Lewis AC; Hunter MC; Heard DE; Carpenter LJ; Creasey DJ; Lee JD; Pilling MJ; Carslaw N; Emmerson KM; Redington A; Derwent RG; Ryall D; Mills G; Penkett SA Sci Total Environ; 2006 May; 360(1-3):5-25. PubMed ID: 16289266 [TBL] [Abstract][Full Text] [Related]
24. [Study on concentration, ozone production potential and sources of VOCs in the atmosphere of Beijing during Olympics period]. Wu FK; Wang YS; An JL; Zhang JG Huan Jing Ke Xue; 2010 Jan; 31(1):10-6. PubMed ID: 20329509 [TBL] [Abstract][Full Text] [Related]
25. Surface O Wang Y; Guo H; Zou S; Lyu X; Ling Z; Cheng H; Zeren Y Environ Pollut; 2018 Mar; 234():155-166. PubMed ID: 29175477 [TBL] [Abstract][Full Text] [Related]
26. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong. Guo H; Lee SC; Louie PK; Ho KF Chemosphere; 2004 Dec; 57(10):1363-72. PubMed ID: 15519381 [TBL] [Abstract][Full Text] [Related]
27. Characteristics of one-year observation of VOCs, NOx, and O Yang Y; Liu X; Zheng J; Tan Q; Feng M; Qu Y; An J; Cheng N J Environ Sci (China); 2019 May; 79():297-310. PubMed ID: 30784453 [TBL] [Abstract][Full Text] [Related]
28. Environmental hazard assessment of chemicals and products. Part VI. Abiotic degradation in the troposphere. Klöpffer W Chemosphere; 1996 Sep; 33(6):1083-99. PubMed ID: 8784998 [TBL] [Abstract][Full Text] [Related]
29. Volatile organic compounds in some urban locations in United States. Mohamed MF; Kang D; Aneja VP Chemosphere; 2002 Jun; 47(8):863-82. PubMed ID: 12079081 [TBL] [Abstract][Full Text] [Related]
30. [Estimate of the formation potential of secondary organic aerosol in Beijing summertime]. Lü ZF; Hao JM; Duan JC; Li JH Huan Jing Ke Xue; 2009 Apr; 30(4):969-75. PubMed ID: 19544991 [TBL] [Abstract][Full Text] [Related]
31. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions. Derwent R J Air Waste Manag Assoc; 2017 Jul; 67(7):789-796. PubMed ID: 28278034 [TBL] [Abstract][Full Text] [Related]
32. An absolute calibration for gas-phase hydroxyl measurements. Hard TM; George LA; O'Brien RJ Environ Sci Technol; 2002 Apr; 36(8):1783-90. PubMed ID: 11993877 [TBL] [Abstract][Full Text] [Related]
33. Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia). Toro MV; Cremades LV; Calbó J Chemosphere; 2006 Oct; 65(5):881-8. PubMed ID: 16631888 [TBL] [Abstract][Full Text] [Related]
34. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere. Cardelino CA; Chameides WL J Air Waste Manag Assoc; 1995 Mar; 45(3):161-80. PubMed ID: 15658156 [TBL] [Abstract][Full Text] [Related]
35. Atmospheric lifetimes and fates of selected fragrance materials and volatile model compounds. Aschmann SM; Arey J; Atkinson R; Simonich SL Environ Sci Technol; 2001 Sep; 35(18):3595-600. PubMed ID: 11783633 [TBL] [Abstract][Full Text] [Related]
36. Factors dominating 3-dimensional ozone distribution during high tropospheric ozone period. Chen X; Liu Y; Lai A; Han S; Fan Q; Wang X; Ling Z; Huang F; Fan S Environ Pollut; 2018 Jan; 232():55-64. PubMed ID: 28958727 [TBL] [Abstract][Full Text] [Related]
37. Modelling the ambient distribution of organic compounds during the august 2003 ozone episode in the southern UK. Utembe SR; Jenkin ME; Derwent RG; Lewis AC; Hopkins JR; Hamilton JF Faraday Discuss; 2005; 130():311-26; discussion 363-86, 519-24. PubMed ID: 16161791 [TBL] [Abstract][Full Text] [Related]
38. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O Tan Z; Lu K; Jiang M; Su R; Dong H; Zeng L; Xie S; Tan Q; Zhang Y Sci Total Environ; 2018 Sep; 636():775-786. PubMed ID: 29727844 [TBL] [Abstract][Full Text] [Related]
39. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model. Wei W; Lv Z; Cheng S; Wang L; Ji D; Zhou Y; Han L; Wang L Environ Monit Assess; 2015 Jun; 187(6):377. PubMed ID: 26013656 [TBL] [Abstract][Full Text] [Related]
40. Sensitivity analysis of ground-level ozone concentration to emission changes in two urban regions of southeast Texas. Lin CJ; Ho TC; Chu HW; Yang H; Chandru S; Krishnarajanagar N; Chiou P; Hopper JR J Environ Manage; 2005 Jun; 75(4):315-23. PubMed ID: 15854725 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]