These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16323801)

  • 1. Field evaluation of in situ source reduction of trichloroethylene in groundwater using bioenhanced in-well vapor stripping.
    Goltz MN; Gandhi RK; Gorelick SM; Hopkins GD; Smith LH; Timmins BH; McCarty PL
    Environ Sci Technol; 2005 Nov; 39(22):8963-70. PubMed ID: 16323801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ; Tick GR; Carroll KC
    J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of molecular biological tools for monitoring efficiency of trichloroethylene remediation.
    Wu YJ; Liu PG; Hsu YS; Whang LM; Lin TF; Hung WN; Cho KC
    Chemosphere; 2019 Oct; 233():697-704. PubMed ID: 31195274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L; Smolders E
    Chemosphere; 2015 Jan; 119():1113-1119. PubMed ID: 25460750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.
    Chong AD; Mayer KU
    J Contam Hydrol; 2017 Sep; 204():1-10. PubMed ID: 28830695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces.
    Jellali S; Benremita H; Muntzer P; Razakarisoa O; Schäfer G
    J Contam Hydrol; 2003 Jan; 60(1-2):31-53. PubMed ID: 12498573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A field evaluation of in situ biodegradation of trichloroethylene through methane injection.
    Eguchi M; Kitagawa M; Suzuki Y; Nakamuara M; Kawai T; Okamura K; Sasaki S; Miyake Y
    Water Res; 2001 Jun; 35(9):2145-52. PubMed ID: 11358293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.
    Lee SS; Kaown D; Lee KK
    J Contam Hydrol; 2015 Nov; 182():231-43. PubMed ID: 26433603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydraulic containment of TCE contaminated groundwater using pulsed pump-and-treat: Performance evaluation and vapor intrusion risk assessment.
    Bae MS; Kim JH; Lee S
    Environ Pollut; 2024 Apr; 347():123683. PubMed ID: 38428797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the impact of VOC-contaminated groundwater on surface water at the city scale.
    Ellis PA; Rivett MO
    J Contam Hydrol; 2007 Apr; 91(1-2):107-27. PubMed ID: 17182150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatilization of trichloroethylene from trees and soil: measurement and scaling approaches.
    Doucette W; Klein H; Chard J; Dupont R; Plaehn W; Bugbee B
    Environ Sci Technol; 2013 Jun; 47(11):5813-20. PubMed ID: 23641774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing TCE source bioremediation by geostatistical analysis of a flux fence.
    Cai Z; Wilson RD; Lerner DN
    Ground Water; 2012; 50(6):908-17. PubMed ID: 22352471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on cometabolic bioventing for the in situ remediation of trichloroethylene.
    Sui H; Li X; Huang G; Jiang B
    Environ Geochem Health; 2006; 28(1-2):147-52. PubMed ID: 16541300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of γ-PGA as the primary carbon source to bioremediate a TCE-polluted aquifer: A pilot-scale study.
    Luo SG; Chen SC; Cao WZ; Lin WH; Sheu YT; Kao CM
    Chemosphere; 2019 Dec; 237():124449. PubMed ID: 31376698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.
    Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural attenuation of trichloroethylene in fractured shale bedrock.
    Lenczewski M; Jardine P; McKay L; Layton A
    J Contam Hydrol; 2003 Jul; 64(3-4):151-68. PubMed ID: 12814878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pilot studies for in-situ aerobic cometabolism of trichloroethylene using toluene-vapor as the primary substrate.
    Tom Kuo MC; Liang KF; Han YL; Fan KC
    Water Res; 2004 Nov; 38(19):4125-34. PubMed ID: 15491660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and ²HH₂O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks.
    Révész KM; Lollar BS; Kirshtein JD; Tiedeman CR; Imbrigiotta TE; Goode DJ; Shapiro AM; Voytek MA; Lacombe PJ; Busenberg E
    J Contam Hydrol; 2014 Jan; 156():62-77. PubMed ID: 24270158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.