These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 163241)
41. Dual divalent cation requirement of the MutT dGTPase. Kinetic and magnetic resonance studies of the metal and substrate complexes. Frick DN; Weber DJ; Gillespie JR; Bessman MJ; Mildvan AS J Biol Chem; 1994 Jan; 269(3):1794-803. PubMed ID: 8294428 [TBL] [Abstract][Full Text] [Related]
42. Interaction of the human prion PrP(106-126) sequence with copper(II), manganese(II), and zinc(II): NMR and EPR studies. Gaggelli E; Bernardi F; Molteni E; Pogni R; Valensin D; Valensin G; Remelli M; Luczkowski M; Kozlowski H J Am Chem Soc; 2005 Jan; 127(3):996-1006. PubMed ID: 15656638 [TBL] [Abstract][Full Text] [Related]
43. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+. Conyers GB; Wu G; Bessman MJ; Mildvan AS Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402 [TBL] [Abstract][Full Text] [Related]
44. A proton relaxation rate study of the copper analog of Escherichia coli alkaline phosphatase. Zukin RS; Hollis DP J Biol Chem; 1974 Jan; 249(2):656-8. PubMed ID: 4358560 [No Abstract] [Full Text] [Related]
45. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II). Buy C; Girault G; Zimmermann JL Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962 [TBL] [Abstract][Full Text] [Related]
46. A novel nuclear relaxation approach for estimating distance between enzyme- and nucleotide-bound metal ions at the catalytic site of pyruvate kinase. Gupta RK J Biol Chem; 1977 Aug; 252(15):5183-5. PubMed ID: 195940 [TBL] [Abstract][Full Text] [Related]
47. Nitrogen ligands at the active site of alkaline phosphatase. Taylor JS; Coleman JE Proc Natl Acad Sci U S A; 1972 Apr; 69(4):859-62. PubMed ID: 4337243 [TBL] [Abstract][Full Text] [Related]
48. Nuclear-magnetic-relaxation studies of the interaction of inhibitor with the threonine-sensitive aspartokinase of Escherichia coli. Tilak A; Wright K; Damle S; Takahashi M Eur J Biochem; 1976 Oct; 69(1):249-55. PubMed ID: 186263 [TBL] [Abstract][Full Text] [Related]
50. Metal ion substitution at the catalytic site of horse-liver alcohol dehydrogenase: results from solvent magnetic relaxation studies. 2. Binding of manganese(II) and competition with zinc(II) and cadmium(II) ions. Andersson I; Maret W; Zeppezauer M; Brown RD; Koenig SH Biochemistry; 1981 Jun; 20(12):3433-8. PubMed ID: 7020752 [TBL] [Abstract][Full Text] [Related]
51. Nuclear relaxation studies on human methemoglobin. Observation of cooperativity and alkaline Bohr effect with inositol hexaphosphate. Gupta RK; Mildvan AS J Biol Chem; 1975 Jan; 250(1):246-53. PubMed ID: 237888 [TBL] [Abstract][Full Text] [Related]
52. Magnetic resonance and kinetic studies of pyruvate, phosphate dikinase. Interaction of oxalate with the phosphorylated form of the enzyme. Michaels G; Milner Y; Reed GH Biochemistry; 1975 Jul; 14(14):3213-9. PubMed ID: 167819 [TBL] [Abstract][Full Text] [Related]
53. Escherichia coli gamma-glutamylcysteine synthetase. Two active site metal ions affect substrate and inhibitor binding. Kelly BS; Antholine WE; Griffith OW J Biol Chem; 2002 Jan; 277(1):50-8. PubMed ID: 11675389 [TBL] [Abstract][Full Text] [Related]
54. Zn(II)-113Cd(II) and Zn(II)-Mg(II) hybrids of alkaline phosphatase. 31P and 113Cd NMR. Gettins P; Coleman JE J Biol Chem; 1984 Apr; 259(8):4991-7. PubMed ID: 6370997 [TBL] [Abstract][Full Text] [Related]
55. 19-F NMR studies of the binding of a fluorine-labeled phosphonate ion to E. coli alkaline phosphatase. Lilja H; Csopak H; Lindman B; Fölsch G Biochim Biophys Acta; 1975 Mar; 384(1):277-82. PubMed ID: 236775 [TBL] [Abstract][Full Text] [Related]
56. Mn(II) alkaline phosphatase. Electron spin resonance and 31P nuclear magnetic resonance. Weiner RE; Chlebowski JF; Haffner PH; Coleman JE J Biol Chem; 1979 Oct; 254(19):9739-46. PubMed ID: 226527 [No Abstract] [Full Text] [Related]
57. Spectroscopic and saturation magnetization properties of the manganese- and cobalt-substituted Fur (ferric uptake regulation) protein from Escherichia coli. Adrait A; Jacquamet L; Le Pape L; Gonzalez de Peredo A; Aberdam D; Hazemann JL; Latour JM; Michaud-Soret I Biochemistry; 1999 May; 38(19):6248-60. PubMed ID: 10320354 [TBL] [Abstract][Full Text] [Related]
58. Spatial proximity of two divalent metal ions at the active site of S-adenosylmethionine synthetase. Markham GD J Biol Chem; 1981 Feb; 256(4):1903-9. PubMed ID: 6257692 [TBL] [Abstract][Full Text] [Related]
59. Binding of metal ions to apoalkaline phosphatase from E. coli: effect of ionic radius. LeVine H; Tsong TY; Hollis DP Life Sci; 1976 Sep; 19(6):859-65. PubMed ID: 787713 [No Abstract] [Full Text] [Related]
60. Bovine kidney alkaline phosphatase. Catalytic properties, subunit interactions in the catalytic process, and mechanism of Mg2+ stimulation. Cathala G; Brunel C J Biol Chem; 1975 Aug; 250(15):6046-53. PubMed ID: 238994 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]