BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 16324120)

  • 1. A daily palatable meal without food deprivation entrains the suprachiasmatic nucleus of rats.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Eur J Neurosci; 2005 Dec; 22(11):2855-62. PubMed ID: 16324120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food-reward signalling in the suprachiasmatic clock.
    Mendoza J; Clesse D; Pévet P; Challet E
    J Neurochem; 2010 Mar; 112(6):1489-99. PubMed ID: 20067576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Neuroscience; 2005; 133(1):293-303. PubMed ID: 15893651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats.
    Verwey M; Khoja Z; Stewart J; Amir S
    Neuroscience; 2007 Jun; 147(2):277-85. PubMed ID: 17544223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment.
    Escobar C; Martínez-Merlos MT; Angeles-Castellanos M; del Carmen Miñana M; Buijs RM
    Eur J Neurosci; 2007 Nov; 26(10):2804-14. PubMed ID: 18001277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fos-like immunoreactivity in the circadian timing system of calorie-restricted rats fed at dawn: daily rhythms and light pulse-induced changes.
    Challet E; Jacob N; Vuillez P; Pévet P; Malan A
    Brain Res; 1997 Oct; 770(1-2):228-36. PubMed ID: 9372223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The suprachiasmatic nucleus participates in food entrainment: a lesion study.
    Angeles-Castellanos M; Salgado-Delgado R; Rodriguez K; Buijs RM; Escobar C
    Neuroscience; 2010 Feb; 165(4):1115-26. PubMed ID: 20004704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime.
    Nováková M; Sládek M; Sumová A
    J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal.
    Dattolo T; Coomans CP; van Diepen HC; Patton DF; Power S; Antle MC; Meijer JH; Mistlberger RE
    Neuroscience; 2016 Feb; 315():91-103. PubMed ID: 26701294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark pulse suppression of P-ERK and c-Fos in the hamster suprachiasmatic nuclei.
    Coogan AN; Piggins HD
    Eur J Neurosci; 2005 Jul; 22(1):158-68. PubMed ID: 16029205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of clock genes in the suprachiasmatic nucleus blocks prolactin surges and alters FRA expression in the locus coeruleus of female rats.
    Poletini MO; McKee DT; Kennett JE; Doster J; Freeman ME
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1325-34. PubMed ID: 17726143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expectancy for food or expectancy for chocolate reveals timing systems for metabolism and reward.
    Angeles-Castellanos M; Salgado-Delgado R; Rodríguez K; Buijs RM; Escobar C
    Neuroscience; 2008 Jul; 155(1):297-307. PubMed ID: 18585440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Behav Brain Res; 2005 Mar; 158(1):133-42. PubMed ID: 15680201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of dexras1 alters nonphotic circadian phase shifts and reveals a role for the intergeniculate leaflet (IGL) in gene-targeted mice.
    Koletar MM; Cheng HY; Penninger JM; Ralph MR
    Chronobiol Int; 2011 Aug; 28(7):553-62. PubMed ID: 21834641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust food anticipatory circadian rhythms in rats with complete ablation of the thalamic paraventricular nucleus.
    Landry GJ; Yamakawa GR; Mistlberger RE
    Brain Res; 2007 Apr; 1141():108-18. PubMed ID: 17296167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In a rat model of night work, activity during the normal resting phase produces desynchrony in the hypothalamus.
    Salgado-Delgado R; Nadia S; Angeles-Castellanos M; Buijs RM; Escobar C
    J Biol Rhythms; 2010 Dec; 25(6):421-31. PubMed ID: 21135158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and reward feeding synchronises the rhythmic brain.
    Challet E; Mendoza J
    Cell Tissue Res; 2010 Jul; 341(1):1-11. PubMed ID: 20563601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.