These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16324134)

  • 1. An investigation of some food-approved polymers as agents to inhibit hydroxyapatite dissolution.
    Barbour ME; Shellis RP; Parker DM; Allen GC; Addy M
    Eur J Oral Sci; 2005 Dec; 113(6):457-61. PubMed ID: 16324134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clinical study in situ to assess the effect of a food approved polymer on the erosion potential of drinks.
    Hooper S; Hughes J; Parker D; Finke M; Newcombe RG; Addy M; West N
    J Dent; 2007 Jun; 35(6):541-6. PubMed ID: 17459557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of the erosive potential of orange juice modified by food additives in enamel and dentine.
    Scaramucci T; Hara AT; Zero DT; Ferreira SS; Aoki IV; Sobral MA
    J Dent; 2011 Dec; 39(12):841-8. PubMed ID: 21945448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of hydroxyapatite dissolution by whole casein: the effects of pH, protein concentration, calcium, and ionic strength.
    Barbour ME; Shellis RP; Parker DM; Allen GC; Addy M
    Eur J Oral Sci; 2008 Oct; 116(5):473-8. PubMed ID: 18821991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pH and acid concentration on erosive dissolution of enamel, dentine, and compressed hydroxyapatite.
    Shellis RP; Barbour ME; Jones SB; Addy M
    Eur J Oral Sci; 2010 Oct; 118(5):475-82. PubMed ID: 20831581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pectin, alginate and gum arabic polymers reduce citric acid erosion effects on human enamel.
    Beyer M; Reichert J; Heurich E; Jandt KD; Sigusch BW
    Dent Mater; 2010 Sep; 26(9):831-9. PubMed ID: 20569976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and structure of polymer layers protecting dental enamel against erosion.
    Beyer M; Reichert J; Sigusch BW; Watts DC; Jandt KD
    Dent Mater; 2012 Oct; 28(10):1089-97. PubMed ID: 22883479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enamel erosion in dietary acids: inhibition by food proteins in vitro.
    Hemingway CA; White AJ; Shellis RP; Addy M; Parker DM; Barbour ME
    Caries Res; 2010; 44(6):525-30. PubMed ID: 20980757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the in situ formed salivary pellicle on enamel and dentine erosion induced by different acids.
    Wiegand A; Bliggenstorfer S; Magalhaes AC; Sener B; Attin T
    Acta Odontol Scand; 2008 Aug; 66(4):225-30. PubMed ID: 18607835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Calcium and Phosphate on Dissolution of Enamel, Dentin and Hydroxyapatite in Citric Acid.
    Shellis RP; Barbour ME; Parker DM; Addy M; Lussi A
    Swiss Dent J; 2023 Jul; 133(7-8):432-438. PubMed ID: 36861646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human enamel erosion in constant composition citric acid solutions as a function of degree of saturation with respect to hydroxyapatite.
    Barbour ME; Parker DM; Allen GC; Jandt KD
    J Oral Rehabil; 2005 Jan; 32(1):16-21. PubMed ID: 15634296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between dodecyl phosphates and hydroxyapatite or tooth enamel: relevance to inhibition of dental erosion.
    Jones SB; Barbour ME; Shellis RP; Rees GD
    Colloids Surf B Biointerfaces; 2014 May; 117():193-8. PubMed ID: 24637111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apparent solubility distributions of hydroxyapatite and enamel apatite.
    Shellis RP; Wilson RM
    J Colloid Interface Sci; 2004 Oct; 278(2):325-32. PubMed ID: 15450451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of hydroxyapatite dissolution by ovalbumin as a function of pH, calcium concentration, protein concentration and acid type.
    Hemingway CA; Shellis RP; Parker DM; Addy M; Barbour ME
    Caries Res; 2008; 42(5):348-53. PubMed ID: 18714157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erosion in relation to nutrition and the environment.
    Barbour ME; Lussi A
    Monogr Oral Sci; 2014; 25():143-54. PubMed ID: 24993263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between enamel erosion and liquid flow rate.
    Shellis RP; Finke M; Eisenburger M; Parker DM; Addy M
    Eur J Oral Sci; 2005 Jun; 113(3):232-8. PubMed ID: 15953248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protection of short-time enamel erosion by different tetrafluoride compounds.
    Wiegand A; Laabs KA; Gressmann G; Roos M; Magalhães AC; Attin T
    Arch Oral Biol; 2008 Jun; 53(6):497-502. PubMed ID: 18282554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Erosion effect of a newly developed soft drink].
    Huysmans MC; Voss HP; Ruben JL; Jager DJ; Vieira Ae
    Ned Tijdschr Tandheelkd; 2006 Feb; 113(2):50-5. PubMed ID: 16509512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution of dental enamel in soft drinks.
    von Fraunhofer JA; Rogers MM
    Gen Dent; 2004; 52(4):308-12. PubMed ID: 15366295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Studies concerning the effect of sport drinks on hydroxyapatite dissolution].
    Yamamoto M; Miyazaki Y; Miura K; Nagasaka N
    Shoni Shikagaku Zasshi; 1991; 29(1):86-94. PubMed ID: 1664540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.