BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16324706)

  • 61. Solvent Quality and Aggregation State of Asphaltenes on Interfacial Mechanics and Jamming Behavior at the Oil/Water Interface.
    Ma J; Haider OM; Chang CC; Grzesiak KA; Squires TM; Walker LM
    Langmuir; 2023 Oct; 39(43):15238-48. PubMed ID: 37862270
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Lignosulfonates in Crude Oil Processing: Interactions with Asphaltenes at the Oil/Water Interface and Screening of Potential Applications.
    Simon S; Saadat M; Ruwoldt J; Dudek M; Ellis RJ; Øye G
    ACS Omega; 2020 Nov; 5(46):30189-30200. PubMed ID: 33251453
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions.
    Patel AR; Schatteman D; De Vos WH; Lesaffer A; Dewettinck K
    J Colloid Interface Sci; 2013 Dec; 411():114-21. PubMed ID: 24050637
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A small angle neutron scattering study of the adsorbed asphaltene layer in water-in-hydrocarbon emulsions: structural description related to stability.
    Jestin J; Simon S; Zupancic L; Barré L
    Langmuir; 2007 Oct; 23(21):10471-8. PubMed ID: 17867712
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Roles of Various Bitumen Components in the Stability of Water-in-Diluted-Bitumen Emulsions.
    Yan Z; Elliott JA; Masliyah JH
    J Colloid Interface Sci; 1999 Dec; 220(2):329-337. PubMed ID: 10607449
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Surface Interaction of Water-in-Oil Emulsion Droplets with Interfacially Active Asphaltenes.
    Shi C; Zhang L; Xie L; Lu X; Liu Q; He J; Mantilla CA; Van den Berg FG; Zeng H
    Langmuir; 2017 Feb; 33(5):1265-1274. PubMed ID: 28081605
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of interfacial rheology on model emulsion coalescence I. Interfacial rheology.
    Yarranton HW; Sztukowski DM; Urrutia P
    J Colloid Interface Sci; 2007 Jun; 310(1):246-52. PubMed ID: 17306818
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins.
    Davis JP; Foegeding EA
    Colloids Surf B Biointerfaces; 2007 Feb; 54(2):200-10. PubMed ID: 17123793
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B.
    Knudsen JC; Øgendal LH; Skibsted LH
    Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rheology of emulsions.
    Derkach SR
    Adv Colloid Interface Sci; 2009 Oct; 151(1-2):1-23. PubMed ID: 19683219
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Thermally induced gelling of oil-in-water emulsions comprising partially crystallized droplets: the impact of interfacial crystals.
    Thivilliers F; Laurichesse E; Saadaoui H; Leal-Calderon F; Schmitt V
    Langmuir; 2008 Dec; 24(23):13364-75. PubMed ID: 18956850
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Triacylglycerol microemulsions stabilized by alkyl ethoxylate surfactants--a basic study. Phase behavior, interfacial tension and microstructure.
    Engelskirchen S; Elsner N; Sottmann T; Strey R
    J Colloid Interface Sci; 2007 Aug; 312(1):114-21. PubMed ID: 17547932
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: adsorption and thickening effect.
    Sun W; Sun D; Wei Y; Liu S; Zhang S
    J Colloid Interface Sci; 2007 Jul; 311(1):228-36. PubMed ID: 17379236
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Disjoining pressure isotherms of water-in-bitumen emulsion films.
    Taylor SD; Czarnecki J; Masliyah J
    J Colloid Interface Sci; 2002 Aug; 252(1):149-60. PubMed ID: 16290773
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Droplet Coalescence and Spontaneous Emulsification in the Presence of Asphaltene Adsorption.
    Bochner de Araujo S; Merola M; Vlassopoulos D; Fuller GG
    Langmuir; 2017 Oct; 33(40):10501-10510. PubMed ID: 28889742
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Emulsions stabilized by stimuli-sensitive poly(N-isopropylacrylamide)-co-methacrylic acid polymers: microgels versus low molecular weight polymers.
    Brugger B; Richtering W
    Langmuir; 2008 Aug; 24(15):7769-77. PubMed ID: 18613705
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Properties of Langmuir Surface and Interfacial Films Built up by Asphaltenes and Resins: Influence of Chemical Demulsifiers.
    Ese MH; Galet L; Clausse D; Sjöblom J
    J Colloid Interface Sci; 1999 Dec; 220(2):293-301. PubMed ID: 10607446
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Water-in-oil gel emulsions from a cholesterol derivative: structure and unusual properties.
    Peng J; Xia H; Liu K; Gao D; Yang M; Yan N; Fang Y
    J Colloid Interface Sci; 2009 Aug; 336(2):780-5. PubMed ID: 19447405
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Water-in-Hydrocarbon Emulsions Stabilized by Asphaltenes at Low Concentrations.
    Yarranton HW; Hussein H; Masliyah JH
    J Colloid Interface Sci; 2000 Aug; 228(1):52-63. PubMed ID: 10882493
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Probing Interfacial Structure and Dynamics of Model and Natural Asphaltenes at Fluid-Fluid Interfaces.
    Fajardo-Rojas F; Pradilla D; Alvarez Solano OA; Samaniuk J
    Langmuir; 2020 Jul; 36(27):7965-7979. PubMed ID: 32580555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.