These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16324743)

  • 1. Species-specific heavy metal accumulation patterns of earthworms on a floodplain in Japan.
    Kamitani T; Kaneko N
    Ecotoxicol Environ Saf; 2007 Jan; 66(1):82-91. PubMed ID: 16324743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal concentrations in soil and earthworms in a floodplain grassland.
    van Vliet PC; van der Zee SE; Ma WC
    Environ Pollut; 2005 Dec; 138(3):505-16. PubMed ID: 15951081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account.
    Hobbelen PH; Koolhaas JE; Van Gestel CA
    Environ Pollut; 2004 Jun; 129(3):409-19. PubMed ID: 15016462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils.
    Hobbelen PH; Koolhaas JE; van Gestel CA
    Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Cd or Pb addition to Cu-contaminated soil on tissue Cu accumulation in the earthworm, Dendrobaena veneta.
    Marinussen MP; van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Dec; 38(3):309-15. PubMed ID: 9469885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal accumulation in earthworms inhabiting floodplain soils.
    Vijver MG; Vink JP; Miermans CJ; van Gestel CA
    Environ Pollut; 2007 Jul; 148(1):132-40. PubMed ID: 17254683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments.
    McLean CM; Koller CE; Rodger JC; MacFarlane GR
    Sci Total Environ; 2009 May; 407(11):3588-96. PubMed ID: 19232676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of spatial and temporal variation in metal availability on earthworms in floodplain soils of the river Dommel, The Netherlands.
    Bleeker EA; van Gestel CA
    Environ Pollut; 2007 Aug; 148(3):824-32. PubMed ID: 17376569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils.
    Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME
    Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of heavy metals on earthworm activities during vermicomposting of municipal solid waste.
    Kumar S; Sharma V; Bhoyar RV; Bhattacharyya JK; Chakrabarti T
    Water Environ Res; 2008 Feb; 80(2):154-61. PubMed ID: 18330226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars.
    Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW
    Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants.
    Ruiz E; Rodríguez L; Alonso-Azcárate J
    Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium and lead accumulation in three endogeic earthworm species.
    Latif R; Malek M; Mirmonsef H
    Bull Environ Contam Toxicol; 2013 Apr; 90(4):456-9. PubMed ID: 23283534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative ultrastructure of metal-sequestering cells reflects intersite and interspecies differences in earthworm metal burdens.
    Morgan AJ; Turner MP
    Arch Environ Contam Toxicol; 2005 Jul; 49(1):45-52. PubMed ID: 15981036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils.
    Deng DM; Deng JC; Li JT; Zhang J; Hu M; Lin Z; Liao B
    J Integr Plant Biol; 2008 Jun; 50(6):691-8. PubMed ID: 18713409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data.
    Veltman K; Huijbregts MA; Vijver MG; Peijnenburg WJ; Hobbelen PH; Koolhaas JE; van Gestel CA; van Vliet PC; Hendriks AJ
    Environ Pollut; 2007 Mar; 146(2):428-36. PubMed ID: 16938367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils.
    Nahmani J; Hodson ME; Devin S; Vijver MG
    Environ Pollut; 2009 Oct; 157(10):2622-8. PubMed ID: 19482399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge.
    Kidd PS; Domínguez-Rodríguez MJ; Díez J; Monterroso C
    Chemosphere; 2007 Jan; 66(8):1458-67. PubMed ID: 17109934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses.
    Shakya K; Chettri MK; Sawidis T
    Arch Environ Contam Toxicol; 2008 Apr; 54(3):412-21. PubMed ID: 17960450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.