These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 16324760)
1. Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions. Pijuan M; Guisasola A; Baeza JA; Carrera J; Casas C; Lafuente J J Biotechnol; 2006 May; 123(1):117-26. PubMed ID: 16324760 [TBL] [Abstract][Full Text] [Related]
2. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Oehmen A; Saunders AM; Vives MT; Yuan Z; Keller J J Biotechnol; 2006 May; 123(1):22-32. PubMed ID: 16293332 [TBL] [Abstract][Full Text] [Related]
3. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source. Pijuan M; Saunders AM; Guisasola A; Baeza JA; Casas C; Blackall LL Biotechnol Bioeng; 2004 Jan; 85(1):56-67. PubMed ID: 14705012 [TBL] [Abstract][Full Text] [Related]
4. Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands. López-Vázquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC Water Res; 2008 May; 42(10-11):2349-60. PubMed ID: 18272198 [TBL] [Abstract][Full Text] [Related]
5. Aerobic phosphorus release linked to acetate uptake in bio-P sludge: process modeling using oxygen uptake rate. Guisasola A; Pijuan M; Baeza JA; Carrera J; Casas C; Lafuente J Biotechnol Bioeng; 2004 Mar; 85(7):722-33. PubMed ID: 14991650 [TBL] [Abstract][Full Text] [Related]
6. A practical method for quantification of phosphorus- and glycogen-accumulating organism populations in activated sludge systems. López-Vázquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC Water Environ Res; 2007 Dec; 79(13):2487-98. PubMed ID: 18198694 [TBL] [Abstract][Full Text] [Related]
7. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system. Lemaire R; Yuan Z; Blackall LL; Crocetti GR Environ Microbiol; 2008 Feb; 10(2):354-63. PubMed ID: 18028415 [TBL] [Abstract][Full Text] [Related]
8. Monitoring the impact of bioaugmentation on the start up of biological phosphorus removal in a laboratory scale activated sludge ecosystem. Dabert P; Delgenès JP; Godon JJ Appl Microbiol Biotechnol; 2005 Feb; 66(5):575-88. PubMed ID: 15322774 [TBL] [Abstract][Full Text] [Related]
9. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions. Nittami T; Oi H; Matsumoto K; Seviour RJ N Biotechnol; 2011 Dec; 29(1):2-8. PubMed ID: 21718809 [TBL] [Abstract][Full Text] [Related]
10. High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis". Ong YH; Chua ASM; Fukushima T; Ngoh GC; Shoji T; Michinaka A Water Res; 2014 Nov; 64():102-112. PubMed ID: 25046374 [TBL] [Abstract][Full Text] [Related]
11. Model-based analysis of anaerobic acetate uptake by a mixed culture of polyphosphate-accumulating and glycogen-accumulating organisms. Zeng RJ; Yuan Z; Keller J Biotechnol Bioeng; 2003 Aug; 83(3):293-302. PubMed ID: 12783485 [TBL] [Abstract][Full Text] [Related]
13. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. Lu H; Keller J; Yuan Z Water Res; 2007 Dec; 41(20):4646-56. PubMed ID: 17658580 [TBL] [Abstract][Full Text] [Related]
14. The investigation of effect of organic carbon sources addition in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactor for nutrients removal from wastewaters. Zheng X; Tong J; Li H; Chen Y Bioresour Technol; 2009 May; 100(9):2515-20. PubMed ID: 19136253 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms. Kishida N; Kim J; Tsuneda S; Sudo R Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009 [TBL] [Abstract][Full Text] [Related]
16. Temperature effects on glycogen accumulating organisms. Lopez-Vazquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC Water Res; 2009 Jun; 43(11):2852-64. PubMed ID: 19380157 [TBL] [Abstract][Full Text] [Related]
17. Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions. Kapagiannidis AG; Zafiriadis I; Aivasidis A Water Sci Technol; 2009; 60(10):2695-703. PubMed ID: 19923776 [TBL] [Abstract][Full Text] [Related]
18. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Lemaire R; Meyer R; Taske A; Crocetti GR; Keller J; Yuan Z J Biotechnol; 2006 Mar; 122(1):62-72. PubMed ID: 16198439 [TBL] [Abstract][Full Text] [Related]
19. Bulking sludge in biological nutrient removal systems. Martins AM; Heijnen JJ; van Loosdrecht MC Biotechnol Bioeng; 2004 Apr; 86(2):125-35. PubMed ID: 15052632 [TBL] [Abstract][Full Text] [Related]
20. Production of polyhydroxybutyrate by activated sludge performing enhanced biological phosphorus removal. Rodgers M; Wu G Bioresour Technol; 2010 Feb; 101(3):1049-53. PubMed ID: 19765985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]