These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16325335)

  • 1. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides.
    Rakhshaee R; Khosravi M; Ganji MT
    J Hazard Mater; 2006 Jun; 134(1-3):120-9. PubMed ID: 16325335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution in the batch and fixed-bed reactors.
    Khosravi M; Rakhshaee R; Ganji MT
    J Hazard Mater; 2005 Dec; 127(1-3):228-37. PubMed ID: 16111810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying effect of cell wall's carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution.
    Rakhshaee R; Giahi M; Pourahmad A
    J Hazard Mater; 2009 Apr; 163(1):165-73. PubMed ID: 18722059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium.
    Sen Gupta S; Bhattacharyya KG
    J Environ Manage; 2008 Apr; 87(1):46-58. PubMed ID: 17499423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies.
    Bayramoğlu G; Yakup Arica M
    Bioresour Technol; 2009 Jan; 100(1):186-93. PubMed ID: 18632265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions.
    Unlü N; Ersoz M
    J Hazard Mater; 2006 Aug; 136(2):272-80. PubMed ID: 16442227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves.
    Sangi MR; Shahmoradi A; Zolgharnein J; Azimi GH; Ghorbandoost M
    J Hazard Mater; 2008 Jul; 155(3):513-22. PubMed ID: 18191021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium.
    Chen AH; Yang CY; Chen CY; Chen CY; Chen CW
    J Hazard Mater; 2009 Apr; 163(2-3):1068-75. PubMed ID: 18774220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study.
    Arshadi M; Abdolmaleki MK; Mousavinia F; Foroughifard S; Karimzadeh A
    J Colloid Interface Sci; 2017 Jan; 486():296-308. PubMed ID: 27723483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy-metal removal from aqueous solution by fungus Mucor rouxii.
    Yan G; Viraraghavan T
    Water Res; 2003 Nov; 37(18):4486-96. PubMed ID: 14511719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass.
    Iftikhar AR; Bhatti HN; Hanif MA; Nadeem R
    J Hazard Mater; 2009 Jan; 161(2-3):941-7. PubMed ID: 18508197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals binding properties of esterified lemon.
    Arslanoglu H; Altundogan HS; Tumen F
    J Hazard Mater; 2009 May; 164(2-3):1406-13. PubMed ID: 18980807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption performances and mechanisms of the newly synthesized N,N'-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media.
    Jing X; Liu F; Yang X; Ling P; Li L; Long C; Li A
    J Hazard Mater; 2009 Aug; 167(1-3):589-96. PubMed ID: 19264406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust.
    Rafatullah M; Sulaiman O; Hashim R; Ahmad A
    J Hazard Mater; 2009 Oct; 170(2-3):969-77. PubMed ID: 19520510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass.
    Sari A; Tuzen M
    J Hazard Mater; 2009 May; 164(2-3):1004-11. PubMed ID: 18845395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of metal ions on lignin.
    Guo X; Zhang S; Shan XQ
    J Hazard Mater; 2008 Feb; 151(1):134-42. PubMed ID: 17587495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption studies on ground shells of hazelnut and almond.
    Bulut Y; Tez Z
    J Hazard Mater; 2007 Oct; 149(1):35-41. PubMed ID: 17467899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.