These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 16325471)
1. Towards high-throughput functional target discovery in angiogenesis research. van Beijnum JR; Eijgelaar WJ; Griffioen AW Trends Mol Med; 2006 Jan; 12(1):44-52. PubMed ID: 16325471 [TBL] [Abstract][Full Text] [Related]
2. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
3. Antisense and RNA interference approaches to target validation in pain research. Kurreck J Curr Opin Drug Discov Devel; 2004 Mar; 7(2):179-87. PubMed ID: 15603251 [TBL] [Abstract][Full Text] [Related]
4. Tools for target identification and validation. Wang S; Sim TB; Kim YS; Chang YT Curr Opin Chem Biol; 2004 Aug; 8(4):371-7. PubMed ID: 15288246 [TBL] [Abstract][Full Text] [Related]
5. Exploring the sounds of silence: RNAi-mediated gene silencing for target identification and validation. Chatterjee-Kishore M; Miller CP Drug Discov Today; 2005 Nov; 10(22):1559-65. PubMed ID: 16257379 [TBL] [Abstract][Full Text] [Related]
6. Genomics and proteomics approaches in understanding tumor angiogenesis. Mittal V; Nolan DJ Expert Rev Mol Diagn; 2007 Mar; 7(2):133-47. PubMed ID: 17331062 [TBL] [Abstract][Full Text] [Related]
7. [Methodology of analysis of molecular-genetic basis of the brain physiology--functional neurogenomics]. Dygalo NN Usp Fiziol Nauk; 2007; 38(1):3-13. PubMed ID: 17370666 [TBL] [Abstract][Full Text] [Related]
8. siRNA-based approaches in cancer therapy. Devi GR Cancer Gene Ther; 2006 Sep; 13(9):819-29. PubMed ID: 16424918 [TBL] [Abstract][Full Text] [Related]
9. Antisense and RNAi: powerful tools in drug target discovery and validation. Lavery KS; King TH Curr Opin Drug Discov Devel; 2003 Jul; 6(4):561-9. PubMed ID: 12951819 [TBL] [Abstract][Full Text] [Related]
10. Setting sights on the treatment of ocular angiogenesis using antisense oligonucleotides. Henry SP; Marcusson EG; Vincent TM; Dean NM Trends Pharmacol Sci; 2004 Oct; 25(10):523-7. PubMed ID: 15380936 [TBL] [Abstract][Full Text] [Related]
11. The zebrafish as a novel system for functional genomics and therapeutic development applications. Nasevicius A; Ekker SC Curr Opin Mol Ther; 2001 Jun; 3(3):224-8. PubMed ID: 11497344 [TBL] [Abstract][Full Text] [Related]
12. Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Shukeir N; Pakneshan P; Chen G; Szyf M; Rabbani SA Cancer Res; 2006 Sep; 66(18):9202-10. PubMed ID: 16982764 [TBL] [Abstract][Full Text] [Related]
13. Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome. Stalmans I Verh K Acad Geneeskd Belg; 2005; 67(4):229-76. PubMed ID: 16334858 [TBL] [Abstract][Full Text] [Related]
14. Short interfering RNA (siRNA), a novel therapeutic tool acting on angiogenesis. Hadj-Slimane R; Lepelletier Y; Lopez N; Garbay C; Raynaud F Biochimie; 2007 Oct; 89(10):1234-44. PubMed ID: 17707573 [TBL] [Abstract][Full Text] [Related]
15. High-throughput target discovery using cell-based genetics. Jackson PD; Harrington JJ Drug Discov Today; 2005 Jan; 10(1):53-60. PubMed ID: 15676299 [TBL] [Abstract][Full Text] [Related]