These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16326083)

  • 21. Comparative binder efficiency modeling of dry granulation binders using roller compaction.
    Gupte A; DeHart M; Stagner WC; Haware RV
    Drug Dev Ind Pharm; 2017 Apr; 43(4):574-583. PubMed ID: 27977316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties.
    Chen L; Ding X; He Z; Fan S; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jul; 546(1-2):125-136. PubMed ID: 29763689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression.
    Capece M; Huang Z; Davé R
    J Pharm Sci; 2017 Jun; 106(6):1608-1617. PubMed ID: 28283431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compaction simulator studies of a new drug substance: effect of particle size and shape, and its binary mixtures with microcrystalline cellulose.
    Celik M; Ong JT; Chowhan ZT; Samuel GJ
    Pharm Dev Technol; 1996 Jul; 1(2):119-26. PubMed ID: 9552338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of humidity on the disintegrant property of alpha-cellulose.
    Uhumwangho MU; Okor RS
    Acta Pol Pharm; 2005; 62(1):39-44. PubMed ID: 16022492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fine-Particle ethylcellulose as a tablet binder in direct compression, immediate-release tablets.
    Desai RP; Neau SH; Pather SI; Johnston TP
    Drug Dev Ind Pharm; 2001 Aug; 27(7):633-41. PubMed ID: 11694010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2301-13. PubMed ID: 16136560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.
    Wu CY; Best SM; Bentham AC; Hancock BC; Bonfield W
    Pharm Res; 2006 Aug; 23(8):1898-905. PubMed ID: 16850273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Examination of the compaction properties of a 1:1 acetaminophen:microcrystalline cellulose mixture using precompression and main compression.
    Akande OF; Rubinstein MH; Ford JL
    J Pharm Sci; 1997 Aug; 86(8):900-7. PubMed ID: 9269867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength.
    He X; Secreast PJ; Amidon GE
    J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directional bonding in compacted microcrystalline cellulose.
    Edge S; Steele DF; Tobyn MJ; Staniforth JN; Chen A
    Drug Dev Ind Pharm; 2001 Aug; 27(7):613-21. PubMed ID: 11694008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new brittleness index for compacted tablets.
    Sonnergaard JM
    J Pharm Sci; 2013 Dec; 102(12):4347-52. PubMed ID: 24258281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of wax on compaction of microcrystalline cellulose beads made by extrusion and spheronization.
    Iloañusi NO; Schwartz JB
    Drug Dev Ind Pharm; 1998 Jan; 24(1):37-44. PubMed ID: 15605595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose.
    Edge S; Steele DF; Chen A; Tobyn MJ; Staniforth JN
    Int J Pharm; 2000 Apr; 200(1):67-72. PubMed ID: 10845687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictive model for tensile strength of pharmaceutical tablets based on local hardness measurements.
    Juban A; Nouguier-Lehon C; Briancon S; Hoc T; Puel F
    Int J Pharm; 2015 Jul; 490(1-2):438-45. PubMed ID: 26043825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Original predictive approach to the compressibility of pharmaceutical powder mixtures based on the Kawakita equation.
    Mazel V; Busignies V; Duca S; Leclerc B; Tchoreloff P
    Int J Pharm; 2011 May; 410(1-2):92-8. PubMed ID: 21421038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation.
    Herting MG; Kleinebudde P
    Eur J Pharm Biopharm; 2008 Sep; 70(1):372-9. PubMed ID: 18511247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fine grade engineered microcrystalline cellulose excipients for direct compaction: Assessing suitability of different dry coating processes.
    Chen L; He Z; Kunnath K; Zheng K; Kim S; Davé RN
    Eur J Pharm Sci; 2020 Aug; 151():105408. PubMed ID: 32502519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study on the effect of drying techniques on the mechanical properties of pellets and compacted pellets.
    Bashaiwoldu AB; Podczeck F; Newton JM
    Eur J Pharm Sci; 2004 Feb; 21(2-3):119-29. PubMed ID: 14757483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.