BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16326395)

  • 1. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila.
    Mandal S; Guptan P; Owusu-Ansah E; Banerjee U
    Dev Cell; 2005 Dec; 9(6):843-54. PubMed ID: 16326395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.
    Jones RG; Plas DR; Kubek S; Buzzai M; Mu J; Xu Y; Birnbaum MJ; Thompson CB
    Mol Cell; 2005 Apr; 18(3):283-93. PubMed ID: 15866171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of mitochondrial inhibitors on cell viability in U937 monocytes under glucose deprivation.
    Han M; Im DS
    Arch Pharm Res; 2008 Jun; 31(6):749-57. PubMed ID: 18563357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipase C delta 1 regulates cell proliferation and cell-cycle progression from G1- to S-phase by control of cyclin E-CDK2 activity.
    Kaproth-Joslin KA; Li X; Reks SE; Kelley GG
    Biochem J; 2008 Nov; 415(3):439-48. PubMed ID: 18588506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMP-activated protein kinase.
    Hutchinson DS; Csikasz RI; Yamamoto DL; Shabalina IG; Wikström P; Wilcke M; Bengtsson T
    Cell Signal; 2007 Jul; 19(7):1610-20. PubMed ID: 17391917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth.
    Buzzai M; Jones RG; Amaravadi RK; Lum JJ; DeBerardinis RJ; Zhao F; Viollet B; Thompson CB
    Cancer Res; 2007 Jul; 67(14):6745-52. PubMed ID: 17638885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cells.
    Baumann P; Mandl-Weber S; Emmerich B; Straka C; Schmidmaier R
    Exp Cell Res; 2007 Oct; 313(16):3592-603. PubMed ID: 17669398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute renal failure during sepsis: potential role of cell cycle regulation.
    Yang QH; Liu DW; Long Y; Liu HZ; Chai WZ; Wang XT
    J Infect; 2009 Jun; 58(6):459-64. PubMed ID: 19428114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic control of G1-S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system.
    Mandal S; Freije WA; Guptan P; Banerjee U
    J Cell Biol; 2010 Feb; 188(4):473-9. PubMed ID: 20176921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential role of diphenyleneiodonium, a flavoenzyme inhibitor, on p53-dependent and -independent cell cycle progression.
    Song JD; Kim KM; Kim KH; Kim CD; Kim JM; Yoo YH; Park YC
    Int J Oncol; 2008 Dec; 33(6):1299-306. PubMed ID: 19020764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G1-S transition.
    Song MS; Song SJ; Kim SJ; Nakayama K; Nakayama KI; Lim DS
    Oncogene; 2008 May; 27(22):3176-85. PubMed ID: 18071316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granulosa cell expression of G1/S phase cyclins and cyclin-dependent kinases in PMSG-induced follicle growth.
    Cannon JD; Cherian-Shaw M; Lovekamp-Swan T; Chaffin CL
    Mol Cell Endocrinol; 2007 Jan; 264(1-2):6-15. PubMed ID: 17084963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of RAS regulation of eye development in Drosophila melanogaster.
    Firth LC; Li W; Zhang H; Baker NE
    Methods Enzymol; 2006; 407():711-21. PubMed ID: 16757364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rho/ROCK signaling in regulation of corneal epithelial cell cycle progression.
    Chen J; Guerriero E; Lathrop K; SundarRaj N
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):175-83. PubMed ID: 18172090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMP-activated protein kinase in the heart: role during health and disease.
    Arad M; Seidman CE; Seidman JG
    Circ Res; 2007 Mar; 100(4):474-88. PubMed ID: 17332438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insight into AMPK regulation: ADP comes into play.
    Jin X; Townley R; Shapiro L
    Structure; 2007 Oct; 15(10):1285-95. PubMed ID: 17937917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation.
    Zeng PY; Berger SL
    Cancer Res; 2006 Nov; 66(22):10701-8. PubMed ID: 17108107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New candidate targets of AMP-activated protein kinase in murine brain revealed by a novel multidimensional substrate-screen for protein kinases.
    Tuerk RD; Thali RF; Auchli Y; Rechsteiner H; Brunisholz RA; Schlattner U; Wallimann T; Neumann D
    J Proteome Res; 2007 Aug; 6(8):3266-77. PubMed ID: 17608512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of iron in the proliferation of Drosophila l(2) mbn cells.
    Metzendorf C; Lind MI
    Biochem Biophys Res Commun; 2010 Sep; 400(3):442-6. PubMed ID: 20807501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition.
    Finkel T; Hwang PM
    Proc Natl Acad Sci U S A; 2009 Jul; 106(29):11825-6. PubMed ID: 19617546
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.