These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 16326809)
1. ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. Lu G; Westbrooks JM; Davidson AL; Chen J Proc Natl Acad Sci U S A; 2005 Dec; 102(50):17969-74. PubMed ID: 16326809 [TBL] [Abstract][Full Text] [Related]
2. Coupling between ATP hydrolysis and protein conformational change in maltose transporter. Lv X; Liu H; Chen H; Gong H Proteins; 2017 Feb; 85(2):207-220. PubMed ID: 27616441 [TBL] [Abstract][Full Text] [Related]
3. Disulfide cross-linking reveals a site of stable interaction between C-terminal regulatory domains of the two MalK subunits in the maltose transport complex. Samanta S; Ayvaz T; Reyes M; Shuman HA; Chen J; Davidson AL J Biol Chem; 2003 Sep; 278(37):35265-71. PubMed ID: 12813052 [TBL] [Abstract][Full Text] [Related]
4. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. Alvarez FJ; Orelle C; Huang Y; Bajaj R; Everly RM; Klug CS; Davidson AL Mol Microbiol; 2015 Dec; 98(5):878-94. PubMed ID: 26268698 [TBL] [Abstract][Full Text] [Related]
5. ATP-driven MalK dimer closure and reopening and conformational changes of the "EAA" motifs are crucial for function of the maltose ATP-binding cassette transporter (MalFGK2). Daus ML; Grote M; Müller P; Doebber M; Herrmann A; Steinhoff HJ; Dassa E; Schneider E J Biol Chem; 2007 Aug; 282(31):22387-96. PubMed ID: 17545154 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the structural requirements for assembly and nucleotide binding of an ATP-binding cassette transporter. The maltose transport system of Escherichia coli. Panagiotidis CH; Reyes M; Sievertsen A; Boos W; Shuman HA J Biol Chem; 1993 Nov; 268(31):23685-96. PubMed ID: 8226895 [TBL] [Abstract][Full Text] [Related]
7. The dynamics of the MgATP-driven closure of MalK, the energy-transducing subunit of the maltose ABC transporter. Oloo EO; Fung EY; Tieleman DP J Biol Chem; 2006 Sep; 281(38):28397-407. PubMed ID: 16877382 [TBL] [Abstract][Full Text] [Related]
8. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Chen J; Lu G; Lin J; Davidson AL; Quiocho FA Mol Cell; 2003 Sep; 12(3):651-61. PubMed ID: 14527411 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of alpha-helical subdomain rotation in the intact maltose ATP-binding cassette transporter. Orelle C; Alvarez FJ; Oldham ML; Orelle A; Wiley TE; Chen J; Davidson AL Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20293-8. PubMed ID: 21059948 [TBL] [Abstract][Full Text] [Related]
10. Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis. Wen PC; Tajkhorshid E Biophys J; 2008 Dec; 95(11):5100-10. PubMed ID: 18790847 [TBL] [Abstract][Full Text] [Related]
11. Functional consequences of mutations in the conserved 'signature sequence' of the ATP-binding-cassette protein MalK. Schmees G; Stein A; Hunke S; Landmesser H; Schneider E Eur J Biochem; 1999 Dec; 266(2):420-30. PubMed ID: 10561582 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a catalytic intermediate of the maltose transporter. Oldham ML; Khare D; Quiocho FA; Davidson AL; Chen J Nature; 2007 Nov; 450(7169):515-21. PubMed ID: 18033289 [TBL] [Abstract][Full Text] [Related]
13. In vitro interaction between components of the inner membrane complex of the maltose ABC transporter of Escherichia coli: modulation by ATP. Mourez M; Jéhanno M; Schneider E; Dassa E Mol Microbiol; 1998 Oct; 30(2):353-63. PubMed ID: 9791180 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the maltose transporter in a pretranslocation intermediate state. Oldham ML; Chen J Science; 2011 Jun; 332(6034):1202-5. PubMed ID: 21566157 [TBL] [Abstract][Full Text] [Related]
15. Transmembrane signaling in the maltose ABC transporter MalFGK2-E: periplasmic MalF-P2 loop communicates substrate availability to the ATP-bound MalK dimer. Grote M; Polyhach Y; Jeschke G; Steinhoff HJ; Schneider E; Bordignon E J Biol Chem; 2009 Jun; 284(26):17521-6. PubMed ID: 19395376 [TBL] [Abstract][Full Text] [Related]
16. Combining Mutations That Inhibit Two Distinct Steps of the ATP Hydrolysis Cycle Restores Wild-Type Function in the Lipopolysaccharide Transporter and Shows that ATP Binding Triggers Transport. Simpson BW; Pahil KS; Owens TW; Lundstedt EA; Davis RM; Kahne D; Ruiz N mBio; 2019 Aug; 10(4):. PubMed ID: 31431556 [TBL] [Abstract][Full Text] [Related]
17. Negative Stain Single-particle EM of the Maltose Transporter in Nanodiscs Reveals Asymmetric Closure of MalK Fabre L; Bao H; Innes J; Duong F; Rouiller I J Biol Chem; 2017 Mar; 292(13):5457-5464. PubMed ID: 28188291 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of the maltose ATP-binding-cassette transporter of Salmonella typhimurium by means of monoclonal antibodies directed against the MalK subunit. Stein A; Seifert M; Volkmer-Engert R; Siepelmeyer J; Jahreis K; Schneider E Eur J Biochem; 2002 Aug; 269(16):4074-85. PubMed ID: 12180984 [TBL] [Abstract][Full Text] [Related]
19. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Locher KP; Lee AT; Rees DC Science; 2002 May; 296(5570):1091-8. PubMed ID: 12004122 [TBL] [Abstract][Full Text] [Related]
20. ATP induces conformational changes of periplasmic loop regions of the maltose ATP-binding cassette transporter. Daus ML; Landmesser H; Schlosser A; Müller P; Herrmann A; Schneider E J Biol Chem; 2006 Feb; 281(7):3856-65. PubMed ID: 16352608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]