These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16326889)

  • 1. Comparison of various types of stiffness as predictors of the load-bearing capacity of callus tissue.
    Floerkemeier T; Hurschler C; Witte F; Wellmann M; Thorey F; Vogt U; Windhagen H
    J Bone Joint Surg Br; 2005 Dec; 87(12):1694-9. PubMed ID: 16326889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness of callus tissue during distraction osteogenesis.
    Floerkemeier T; Thorey F; Hurschler C; Wellmann M; Witte F; Windhagen H
    Orthop Traumatol Surg Res; 2010 Apr; 96(2):155-60. PubMed ID: 20417914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of bone mineral parameter measurements by dual-energy x-ray absorptiometry with bone stiffness measurements as indicators of the load-bearing capacity of regenerating bone.
    Floerkemeier T; Wellmann M; Thorey F; Hurschler C; Witte F; Windhagen H
    J Orthop Trauma; 2010 Mar; 24(3):181-7. PubMed ID: 20182255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of cyclic compression and distraction on the healing of experimental tibial fractures.
    Hente R; Füchtmeier B; Schlegel U; Ernstberger A; Perren SM
    J Orthop Res; 2004 Jul; 22(4):709-15. PubMed ID: 15183425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture healing after reamed and unreamed intramedullary nailing in sheep tibia.
    Högel F; Schlegel U; Südkamp N; Müller C
    Injury; 2011 Jul; 42(7):667-74. PubMed ID: 21074768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologic weight-bearing and consolidation of new bone in a rat model of distraction osteogenesis.
    Pacicca DM; Moore DC; Ehrlich MG
    J Pediatr Orthop; 2002; 22(5):652-9. PubMed ID: 12198470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical comparison of callus over a locked intramedullary nail in various segmental bone defects in a sheep model.
    Tyllianakis M; Deligianni D; Panagopoulos A; Pappas M; Sourgiadaki E; Mavrilas D; Papadopoulos A
    Med Sci Monit; 2007 May; 13(5):BR125-30. PubMed ID: 17476191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation.
    Mora-Macías J; Reina-Romo E; López-Pliego M; Giráldez-Sánchez MA; Domínguez J
    Ann Biomed Eng; 2015 Nov; 43(11):2663-74. PubMed ID: 25956927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain.
    Schuelke J; Meyers N; Reitmaier S; Klose S; Ignatius A; Claes L
    PLoS One; 2018; 13(4):e0195466. PubMed ID: 29624608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of biomechanical stability after callus distraction by high resolution scanning acoustic microscopy.
    Hube R; Mayr H; Hein W; Raum K
    Ultrasound Med Biol; 2006 Dec; 32(12):1913-21. PubMed ID: 17169703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local application of VEGF compensates callus deficiency after acute soft tissue trauma--results using a limb-shortening distraction procedure in rabbit tibia.
    Ochman S; Frey S; Raschke MJ; Deventer JN; Meffert RH
    J Orthop Res; 2011 Jul; 29(7):1093-8. PubMed ID: 21284032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo.
    Mora-Macías J; Reina-Romo E; Domínguez J
    Med Eng Phys; 2015 Oct; 37(10):969-78. PubMed ID: 26320818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are bone turnover markers capable of predicting callus consolidation during bone healing?
    Klein P; Bail HJ; Schell H; Michel R; Amthauer H; Bragulla H; Duda GN
    Calcif Tissue Int; 2004 Jul; 75(1):40-9. PubMed ID: 15148561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction.
    Claes L; Meyers N; Schülke J; Reitmaier S; Klose S; Ignatius A
    PLoS One; 2018; 13(8):e0202702. PubMed ID: 30138362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent parathyroid hormone (1-34) enhances mechanical strength and density of new bone after distraction osteogenesis in rats.
    Seebach C; Skripitz R; Andreassen TT; Aspenberg P
    J Orthop Res; 2004 May; 22(3):472-8. PubMed ID: 15099623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible problems of moulding the regenerate in mandibular distraction osteogenesis -- experimental aspects in a canine model.
    Kunz C; Adolphs N; Buescher P; Hammer B; Rahn B
    J Craniomaxillofac Surg; 2005 Dec; 33(6):377-85. PubMed ID: 16253512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical forces as predictors of healing during tibial lengthening by distraction osteogenesis.
    Aronson J; Harp JH
    Clin Orthop Relat Res; 1994 Apr; (301):73-9. PubMed ID: 8156700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The initial phase of fracture healing is specifically sensitive to mechanical conditions.
    Klein P; Schell H; Streitparth F; Heller M; Kassi JP; Kandziora F; Bragulla H; Haas NP; Duda GN
    J Orthop Res; 2003 Jul; 21(4):662-9. PubMed ID: 12798066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two systems for tibial external fixation in rabbits.
    Meffert RH; Tis JE; Lounici S; Rogers JS; Inoue N; Chao EY
    Lab Anim Sci; 1999 Dec; 49(6):650-4. PubMed ID: 10638502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of tibial loading using strain gauges.
    Funk JR; Crandall JR
    Biomed Sci Instrum; 2006; 42():160-5. PubMed ID: 16817602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.