BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16327013)

  • 41. Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase.
    Fairchild CD; Glazer AN
    J Biol Chem; 1994 Mar; 269(12):8686-94. PubMed ID: 8132596
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1.
    Lamparter T; Carrascal M; Michael N; Martinez E; Rottwinkel G; Abian J
    Biochemistry; 2004 Mar; 43(12):3659-69. PubMed ID: 15035636
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of histidine-86 in the catalytic mechanism of ferredoxin:thioredoxin reductase.
    Walters EM; Garcia-Serres R; Naik SG; Bourquin F; Glauser DA; Schürmann P; Huynh BH; Johnson MK
    Biochemistry; 2009 Feb; 48(5):1016-24. PubMed ID: 19132843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cysteine-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena Sp. PCC7120.
    Zhao KH; Su P; Li J; Tu JM; Zhou M; Bubenzer C; Scheer H
    J Biol Chem; 2006 Mar; 281(13):8573-81. PubMed ID: 16452471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bilin-metabolizing enzymes: site-specific reductions catalyzed by two different type of enzymes.
    Sugishima M; Wada K; Unno M; Fukuyama K
    Curr Opin Struct Biol; 2019 Dec; 59():73-80. PubMed ID: 30954759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase.
    Terry MJ; Maines MD; Lagarias JC
    J Biol Chem; 1993 Dec; 268(35):26099-106. PubMed ID: 8253726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution.
    Wagner JR; Zhang J; Brunzelle JS; Vierstra RD; Forest KT
    J Biol Chem; 2007 Apr; 282(16):12298-309. PubMed ID: 17322301
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum.
    Wu SH; McDowell MT; Lagarias JC
    J Biol Chem; 1997 Oct; 272(41):25700-5. PubMed ID: 9325294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of ferredoxin:thioredoxin reductase modified by site-directed mutagenesis.
    Glauser DA; Bourquin F; Manieri W; Schürmann P
    J Biol Chem; 2004 Apr; 279(16):16662-9. PubMed ID: 14769790
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181, His184.
    Khan H; Barna T; Bruce NC; Munro AW; Leys D; Scrutton NS
    FEBS J; 2005 Sep; 272(18):4660-71. PubMed ID: 16156787
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purification and properties of ferredoxin-NADP+ oxidoreductase from the nitrogen-fixing cyanobacteria Anabaena variabilis.
    Sancho J; Peleato ML; Gomez-Moreno C; Edmondson DE
    Arch Biochem Biophys; 1988 Jan; 260(1):200-7. PubMed ID: 3124746
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism.
    Boll M; Fuchs G
    Eur J Biochem; 1998 Feb; 251(3):946-54. PubMed ID: 9490071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Catalytic properties, molecular composition and sequence alignments of pyruvate: ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro).
    Bock AK; Kunow J; Glasemacher J; Schönheit P
    Eur J Biochem; 1996 Apr; 237(1):35-44. PubMed ID: 8620891
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of conserved histidine residues in the pyridine nucleotide transhydrogenase of Escherichia coli.
    Bragg PD; Hou C
    Eur J Biochem; 1996 Oct; 241(2):611-8. PubMed ID: 8917463
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation of a photoreversible phycocyanobilin-apophytochrome adduct in vitro.
    Elich TD; Lagarias JC
    J Biol Chem; 1989 Aug; 264(22):12902-8. PubMed ID: 2753895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of amino acid residues essential to the activity of lyase CpcT1 from Nostoc sp. PCC7120.
    Zhang J; Sun YF; Zhao KH; Zhou M
    Gene; 2012 Dec; 511(1):88-95. PubMed ID: 22982227
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrostatic interaction of phytochromobilin synthase and ferredoxin for biosynthesis of phytochrome chromophore.
    Chiu FY; Chen YR; Tu SL
    J Biol Chem; 2010 Feb; 285(7):5056-65. PubMed ID: 19996315
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biosynthesis of phycocyanobilin from exogenous labeled biliverdin in Cyanidium caldarium.
    Beale SI; Cornejo J
    Arch Biochem Biophys; 1983 Nov; 227(1):279-86. PubMed ID: 6416181
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis.
    Borucki B; Seibeck S; Heyn MP; Lamparter T
    Biochemistry; 2009 Jul; 48(27):6305-17. PubMed ID: 19496558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and arginine.
    Pickard RT; Chiou XG; Strifler BA; DeFelippis MR; Hyslop PA; Tebbe AL; Yee YK; Reynolds LJ; Dennis EA; Kramer RM; Sharp JD
    J Biol Chem; 1996 Aug; 271(32):19225-31. PubMed ID: 8702602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.