BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16327184)

  • 1. Development of fast disintegrating compressed tablets using amino acid as disintegration accelerator: evaluation of wetting and disintegration of tablet on the basis of surface free energy.
    Fukami J; Ozawa A; Yoshihashi Y; Yonemochi E; Terada K
    Chem Pharm Bull (Tokyo); 2005 Dec; 53(12):1536-9. PubMed ID: 16327184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and evaluation of a compressed tablet rapidly disintegrating in the oral cavity.
    Bi Y; Sunada H; Yonezawa Y; Danjo K; Otsuka A; Iida K
    Chem Pharm Bull (Tokyo); 1996 Nov; 44(11):2121-7. PubMed ID: 8945778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of rapidly disintegrating tablets containing glycine and carboxymethylcellulose.
    Fukami J; Yonemochi E; Yoshihashi Y; Terada K
    Int J Pharm; 2006 Mar; 310(1-2):101-9. PubMed ID: 16434157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new formulation for orally disintegrating tablets using a suspension spray-coating method.
    Okuda Y; Irisawa Y; Okimoto K; Osawa T; Yamashita S
    Int J Pharm; 2009 Dec; 382(1-2):80-7. PubMed ID: 19686825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration.
    Yang B; Wei C; Yang Y; Wang Q; Li S
    Drug Dev Ind Pharm; 2018 Sep; 44(9):1417-1425. PubMed ID: 29557692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-disintegrating sublingual tablets: effect of epinephrine load on tablet characteristics.
    Rawas-Qalaji MM; Simons FE; Simons KJ
    AAPS PharmSciTech; 2006 Apr; 7(2):E41. PubMed ID: 16796358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the disintegration time of rapidly disintegrating tablets via a novel method utilizing a CCD camera.
    Morita Y; Tsushima Y; Yasui M; Termoz R; Ajioka J; Takayama K
    Chem Pharm Bull (Tokyo); 2002 Sep; 50(9):1181-6. PubMed ID: 12237533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orally Disintegrating Tablet Manufacture via Direct Powder Compression Using Cellulose Nanofiber as a Functional Additive.
    Nakamura S; Fukai T; Sakamoto T
    AAPS PharmSciTech; 2021 Dec; 23(1):37. PubMed ID: 34950985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the type of lubricant on the characteristics of orally disintegrating tablets manufactured using the phase transition of sugar alcohol.
    Kuno Y; Kojima M; Nakagami H; Yonemochi E; Terada K
    Eur J Pharm Biopharm; 2008 Aug; 69(3):986-92. PubMed ID: 18396020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation and characterisation of lyophilised rapid disintegrating tablets using amino acids as matrix forming agents.
    AlHusban F; Perrie Y; Mohammed AR
    Eur J Pharm Biopharm; 2010 Jun; 75(2):254-62. PubMed ID: 20332027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of disintegration-promoting agent, lubricants and moisture treatment on optimized fast disintegrating tablets.
    Late SG; Yu YY; Banga AK
    Int J Pharm; 2009 Jan; 365(1-2):4-11. PubMed ID: 18778759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disintegration propensity of tablets evaluated by means of disintegrating force kinetics.
    Massimo G; Catellani PL; Santi P; Bettini R; Vaona G; Bonfanti A; Maggi L; Colombo P
    Pharm Dev Technol; 2000; 5(2):163-9. PubMed ID: 10810746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile.
    Hosseini A; Körber M; Bodmeier R
    Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of oral dosage form for elderly patients: use of agar as base of rapidly disintegrating oral tablets.
    Ito A; Sugihara M
    Chem Pharm Bull (Tokyo); 1996 Nov; 44(11):2132-6. PubMed ID: 8945779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of formulation excipients in the development of lyophilised fast-disintegrating tablets.
    Chandrasekhar R; Hassan Z; Alhusban F; Smith AM; Mohammed AR
    Eur J Pharm Biopharm; 2009 May; 72(1):119-29. PubMed ID: 19073253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Establishment of a Novel Method to Evaluate Water Permeation Rates by Combining the Dynamic Contact Angle and Thermographic Approach: Significance of Disintegration Properties of Orally Disintegrating Tablets].
    Suzuki T; Kurano T; Kanazawa T; Suzuki N
    Yakugaku Zasshi; 2020; 140(8):1071-1080. PubMed ID: 32741865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of novel fast-disintegrating tablets by direct compression using sucrose stearic acid ester as a disintegration-accelerating agent.
    Koseki T; Onishi H; Takahashi Y; Uchida M; Machida Y
    Chem Pharm Bull (Tokyo); 2008 Oct; 56(10):1384-8. PubMed ID: 18827375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and optimization of mouth/orally dissolving tablets using a combination of glycine, carboxymethyl cellulose and sodium alginate: a comparison with superdisintegrants.
    Vora N; Rana V
    Pharm Dev Technol; 2008; 13(3):233-43. PubMed ID: 18484492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation, development, and performance evaluation of metoclopramide HCl oro-dispersible sustained release tablet.
    Kasliwal N; Negi JS; Jugran V; Jain R
    Arch Pharm Res; 2011 Oct; 34(10):1691-700. PubMed ID: 22076769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.