These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 16327789)

  • 1. Metal-free silicon-molecule-nanotube testbed and memory device.
    He J; Chen B; Flatt AK; Stephenson JJ; Doyle CD; Tour JM
    Nat Mater; 2006 Jan; 5(1):63-8. PubMed ID: 16327789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular electronics: chemistry of molecules or physics of contacts?
    Zhirnov VV; Cavin RK
    Nat Mater; 2006 Jan; 5(1):11-2. PubMed ID: 16389281
    [No Abstract]   [Full Text] [Related]  

  • 3. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes.
    Blackburn JL; Barnes TM; Beard MC; Kim YH; Tenent RC; McDonald TJ; To B; Coutts TJ; Heben MJ
    ACS Nano; 2008 Jun; 2(6):1266-74. PubMed ID: 19206344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile "scratching" method with common metal objects to generate large-scale catalyst patterns used for growth of single-walled carbon nanotubes.
    Cao X; Li B; Huang Y; Boey F; Yu T; Shen Z; Zhang H
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1873-7. PubMed ID: 20355809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes.
    Kang SJ; Kocabas C; Ozel T; Shim M; Pimparkar N; Alam MA; Rotkin SV; Rogers JA
    Nat Nanotechnol; 2007 Apr; 2(4):230-6. PubMed ID: 18654268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly.
    Yu J; Shapter JG; Quinton JS; Johnston MR; Beattie DA
    Phys Chem Chem Phys; 2007 Jan; 9(4):510-20. PubMed ID: 17216067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol-terminated monolayers on oxide-free Si: assembly of semiconductor-alkyl-S-metal junctions.
    Böcking T; Salomon A; Cahen D; Gooding JJ
    Langmuir; 2007 Mar; 23(6):3236-41. PubMed ID: 17266341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-induced gap states at a carbon-nanotube intramolecular heterojunction observed by scanning tunneling microscopy.
    Ruppalt LB; Lyding JW
    Small; 2007 Feb; 3(2):280-4. PubMed ID: 17191289
    [No Abstract]   [Full Text] [Related]  

  • 10. Memory effects based on random networks of single-walled carbon nanotubes.
    Lee KW; Heo KY; Kim KM; Kim HJ
    Nanotechnology; 2009 Oct; 20(40):405210. PubMed ID: 19752496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorting carbon nanotubes by electronic structure using density differentiation.
    Arnold MS; Green AA; Hulvat JF; Stupp SI; Hersam MC
    Nat Nanotechnol; 2006 Oct; 1(1):60-5. PubMed ID: 18654143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-terminal nonvolatile memories based on single-walled carbon nanotubes.
    Yao J; Jin Z; Zhong L; Natelson D; Tour JM
    ACS Nano; 2009 Dec; 3(12):4122-6. PubMed ID: 19904998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-dependent electron-transport properties of carbon nanotubes.
    Back JH; Shim M
    J Phys Chem B; 2006 Nov; 110(47):23736-41. PubMed ID: 17125334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular electronic devices based on single-walled carbon nanotube electrodes.
    Feldman AK; Steigerwald ML; Guo X; Nuckolls C
    Acc Chem Res; 2008 Dec; 41(12):1731-41. PubMed ID: 18798657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferroelectric-carbon nanotube memory devices.
    Kumar A; Shivareddy SG; Correa M; Resto O; Choi Y; Cole MT; Katiyar RS; Scott JF; Amaratunga GA; Lu H; Gruverman A
    Nanotechnology; 2012 Apr; 23(16):165702. PubMed ID: 22460805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.
    Kocabas C; Hur SH; Gaur A; Meitl MA; Shim M; Rogers JA
    Small; 2005 Nov; 1(11):1110-6. PubMed ID: 17193404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotube network transistors from peptide-wrapped single-walled carbon nanotubes.
    Panhuis Mi; Gowrisanker S; Vanesko DJ; Mire CA; Jia H; Xie H; Baughman RH; Musselman IH; Gnade BE; Dieckmann GR; Draper RK
    Small; 2005 Aug; 1(8-9):820-3. PubMed ID: 17193531
    [No Abstract]   [Full Text] [Related]  

  • 19. Direct measurement of charge transport through helical poly(ethyl propiolate) nanorods wired into gaps in single walled carbon nanotubes.
    Wang N; Zhang Y; Yano K; Durkan C; Plank N; Welland ME; Unalan HE; Mann M; Amaratunga GA; Milne WI
    Nanotechnology; 2009 Mar; 20(10):105201. PubMed ID: 19417511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential orientation of a chiral semiconducting carbon nanotube on the locally depassivated Si(100)-2 x 1:H surface identified by scanning tunneling microscopy.
    Albrecht PM; Barraza-Lopez S; Lyding JW
    Small; 2007 Aug; 3(8):1402-6. PubMed ID: 17583550
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.