These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 16328056)
1. The influence of CD44v3-v10 on adhesion, invasion and MMP-14 expression in prostate cancer cells. Harrison GM; Davies G; Martin TA; Mason MD; Jiang WG Oncol Rep; 2006 Jan; 15(1):199-206. PubMed ID: 16328056 [TBL] [Abstract][Full Text] [Related]
2. Distribution and expression of CD44 isoforms and Ezrin during prostate cancer-endothelium interaction. Harrison GM; Davies G; Martin TA; Jiang WG; Mason MD Int J Oncol; 2002 Nov; 21(5):935-40. PubMed ID: 12370738 [TBL] [Abstract][Full Text] [Related]
3. Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Aalinkeel R; Nair MP; Sufrin G; Mahajan SD; Chadha KC; Chawda RP; Schwartz SA Cancer Res; 2004 Aug; 64(15):5311-21. PubMed ID: 15289337 [TBL] [Abstract][Full Text] [Related]
4. Expression and functional role of CCR9 in prostate cancer cell migration and invasion. Singh S; Singh UP; Stiles JK; Grizzle WE; Lillard JW Clin Cancer Res; 2004 Dec; 10(24):8743-50. PubMed ID: 15623660 [TBL] [Abstract][Full Text] [Related]
5. Expression of the prostate transglutaminase (TGase-4) in prostate cancer cells and its impact on the invasiveness of prostate cancer. Davies G; Ablin RJ; Mason MD; Jiang WG J Exp Ther Oncol; 2007; 6(3):257-64. PubMed ID: 17552366 [TBL] [Abstract][Full Text] [Related]
6. Tumour-stroma interactions between metastatic prostate cancer cells and fibroblasts. Kaminski A; Hahne JC; Haddouti el-M; Florin A; Wellmann A; Wernert N Int J Mol Med; 2006 Nov; 18(5):941-50. PubMed ID: 17016625 [TBL] [Abstract][Full Text] [Related]
7. Increased invasion and expression of MMP-9 in human colorectal cell lines by a CD44-dependent mechanism. Murray D; Morrin M; McDonnell S Anticancer Res; 2004; 24(2A):489-94. PubMed ID: 15152948 [TBL] [Abstract][Full Text] [Related]
8. Genetic upregulation of matriptase-2 reduces the aggressiveness of prostate cancer cells in vitro and in vivo and affects FAK and paxillin localisation. Sanders AJ; Parr C; Martin TA; Lane J; Mason MD; Jiang WG J Cell Physiol; 2008 Sep; 216(3):780-9. PubMed ID: 18449907 [TBL] [Abstract][Full Text] [Related]
9. Targeting the HGF/SF receptor c-met using a hammerhead ribozyme transgene reduces in vitro invasion and migration in prostate cancer cells. Davies G; Watkins G; Mason MD; Jiang WG Prostate; 2004 Sep; 60(4):317-24. PubMed ID: 15264243 [TBL] [Abstract][Full Text] [Related]
10. Expression of CD44 in prostate cancer cells: association with cell proliferation and invasive potential. Lokeshwar BL; Lokeshwar VB; Block NL Anticancer Res; 1995; 15(4):1191-8. PubMed ID: 7544562 [TBL] [Abstract][Full Text] [Related]
11. Differential metastasis-associated gene analysis of prostate carcinoma cells derived from primary tumor and spontaneous lymphatic metastasis in nude mice with orthotopic implantation of PC-3M cells. Chu JH; Sun ZY; Meng XL; Wu JH; He GL; Liu GM; Jiang XR Cancer Lett; 2006 Feb; 233(1):79-88. PubMed ID: 15885894 [TBL] [Abstract][Full Text] [Related]
12. Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Afify A; Purnell P; Nguyen L Exp Mol Pathol; 2009 Apr; 86(2):95-100. PubMed ID: 19167378 [TBL] [Abstract][Full Text] [Related]
13. Blockade of the type I IGF receptor expression in human prostate cancer cells inhibits proliferation and invasion, up-regulates IGF binding protein-3, and suppresses MMP-2 expression. Grzmil M; Hemmerlein B; Thelen P; Schweyer S; Burfeind P J Pathol; 2004 Jan; 202(1):50-9. PubMed ID: 14694521 [TBL] [Abstract][Full Text] [Related]
14. Heparan sulfate enhances invasion by human colon carcinoma cell lines through expression of CD44 variant exon 3. Kuniyasu H; Oue N; Tsutsumi M; Tahara E; Yasui W Clin Cancer Res; 2001 Dec; 7(12):4067-72. PubMed ID: 11751503 [TBL] [Abstract][Full Text] [Related]
15. Anti-tumor effect of ascorbic acid, lysine, proline, arginine, and epigallocatechin gallate on prostate cancer cell lines PC-3, LNCaP, and DU145. Roomi MW; Ivanov V; Kalinovsky T; Niedzwiecki A; Rath M Res Commun Mol Pathol Pharmacol; 2004; 115-116():251-64. PubMed ID: 17564322 [TBL] [Abstract][Full Text] [Related]
16. Phospholipase-C gamma-1 (PLCgamma-1) is critical in hepatocyte growth factor induced in vitro invasion and migration without affecting the growth of prostate cancer cells. Davies G; Martin TA; Ye L; Lewis-Russell JM; Mason MD; Jiang WG Urol Oncol; 2008; 26(4):386-91. PubMed ID: 18367108 [TBL] [Abstract][Full Text] [Related]
17. CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. Bourguignon LY; Gunja-Smith Z; Iida N; Zhu HB; Young LJ; Muller WJ; Cardiff RD J Cell Physiol; 1998 Jul; 176(1):206-15. PubMed ID: 9618160 [TBL] [Abstract][Full Text] [Related]
18. mRNA expression of the five membrane-type matrix metalloproteinases MT1-MT5 in human prostatic cell lines and their down-regulation in human malignant prostatic tissue. Jung M; Römer A; Keyszer G; Lein M; Kristiansen G; Schnorr D; Loening SA; Jung K Prostate; 2003 May; 55(2):89-98. PubMed ID: 12661033 [TBL] [Abstract][Full Text] [Related]
19. A conjugate of camptothecin and a somatostatin analog against prostate cancer cell invasion via a possible signaling pathway involving PI3K/Akt, alphaVbeta3/alphaVbeta5 and MMP-2/-9. Sun LC; Luo J; Mackey LV; Fuselier JA; Coy DH Cancer Lett; 2007 Feb; 246(1-2):157-66. PubMed ID: 16644105 [TBL] [Abstract][Full Text] [Related]
20. Regulation of endothelial CD44 expression and endothelium-tumour cell interactions by hepatocyte growth factor/scatter factor. Hiscox S; Jiang WG Biochem Biophys Res Commun; 1997 Apr; 233(1):1-5. PubMed ID: 9144384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]