These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16328307)

  • 1. Cortical hemoglobin-concentration changes under the coil induced by single-pulse TMS in humans: a simultaneous recording with near-infrared spectroscopy.
    Mochizuki H; Ugawa Y; Terao Y; Sakai KL
    Exp Brain Res; 2006 Mar; 169(3):302-10. PubMed ID: 16328307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical hemoglobin concentration changes underneath the coil after single-pulse transcranial magnetic stimulation: a near-infrared spectroscopy study.
    Furubayashi T; Mochizuki H; Terao Y; Arai N; Hanajima R; Hamada M; Matsumoto H; Nakatani-Enomoto S; Okabe S; Yugeta A; Inomata-Terada S; Ugawa Y
    J Neurophysiol; 2013 Mar; 109(6):1626-37. PubMed ID: 23274310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadri-pulse stimulation induces stimulation frequency dependent cortical hemoglobin concentration changes within the ipsilateral motor cortical network.
    Groiss SJ; Mochizuki H; Furubayashi T; Kobayashi S; Nakatani-Enomoto S; Nakamura K; Ugawa Y
    Brain Stimul; 2013 Jan; 6(1):40-8. PubMed ID: 22405738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of cerebral blood flow changes during repetitive transcranial magnetic stimulation by recording hemoglobin in the brain cortex, just beneath the stimulation coil, with near-infrared spectroscopy.
    Hada Y; Abo M; Kaminaga T; Mikami M
    Neuroimage; 2006 Sep; 32(3):1226-30. PubMed ID: 16765065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoglobin concentration changes in the contralateral hemisphere during and after theta burst stimulation of the human sensorimotor cortices.
    Mochizuki H; Furubayashi T; Hanajima R; Terao Y; Mizuno Y; Okabe S; Ugawa Y
    Exp Brain Res; 2007 Jul; 180(4):667-75. PubMed ID: 17297550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study.
    Hanaoka N; Aoyama Y; Kameyama M; Fukuda M; Mikuni M
    Neurosci Lett; 2007 Mar; 414(2):99-104. PubMed ID: 17293047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial magnetic stimulation of the parietal cortex facilitates spatial working memory: near-infrared spectroscopy study.
    Yamanaka K; Yamagata B; Tomioka H; Kawasaki S; Mimura M
    Cereb Cortex; 2010 May; 20(5):1037-45. PubMed ID: 19684247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticomotor responses to triple-pulse transcranial magnetic stimulation: Effects of interstimulus interval and stimulus intensity.
    Sacco P; Turner D; Rothwell J; Thickbroom G
    Brain Stimul; 2009 Jan; 2(1):36-40. PubMed ID: 20633401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated haemoglobin levels in the motor cortex following 1 Hz transcranial magnetic stimulation: a preliminary study.
    Chiang TC; Vaithianathan T; Leung T; Lavidor M; Walsh V; Delpy DT
    Exp Brain Res; 2007 Aug; 181(4):555-60. PubMed ID: 17530233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse.
    Orth M; Rothwell JC
    Clin Neurophysiol; 2004 May; 115(5):1076-82. PubMed ID: 15066533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TMS orientation for NIRS-functional motor mapping.
    Akiyama T; Ohira T; Kawase T; Kato T
    Brain Topogr; 2006; 19(1-2):1-9. PubMed ID: 17136594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation.
    Thomson RH; Cleve TJ; Bailey NW; Rogasch NC; Maller JJ; Daskalakis ZJ; Fitzgerald PB
    Brain Stimul; 2013 Jul; 6(4):576-81. PubMed ID: 23376041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time measurement of cerebral blood flow during and after repetitive transcranial magnetic stimulation: A near-infrared spectroscopy study.
    Park E; Kang MJ; Lee A; Chang WH; Shin YI; Kim YH
    Neurosci Lett; 2017 Jul; 653():78-83. PubMed ID: 28536052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood oxygenation changes resulting from suprathreshold transcranial magnetic stimulation.
    Thomson RH; Maller JJ; Daskalakis ZJ; Fitzgerald PB
    Brain Stimul; 2011 Jul; 4(3):165-8. PubMed ID: 21777877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic-stimulation-related physiological artifacts in hemodynamic near-infrared spectroscopy signals.
    Näsi T; Mäki H; Kotilahti K; Nissilä I; Haapalahti P; Ilmoniemi RJ
    PLoS One; 2011; 6(8):e24002. PubMed ID: 21887362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A near infra-red spectroscopy study of the effects of pre-frontal single and paired pulse transcranial magnetic stimulation.
    Thomson RH; Daskalakis ZJ; Fitzgerald PB
    Clin Neurophysiol; 2011 Feb; 122(2):378-82. PubMed ID: 20817548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study.
    Fuggetta G; Fiaschi A; Manganotti P
    Neuroimage; 2005 Oct; 27(4):896-908. PubMed ID: 16054397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The timing and intensity of transcranial magnetic stimulation, and the scalp site stimulated, as variables influencing motor sequence performance in healthy subjects.
    Gregori B; Currà A; Dinapoli L; Bologna M; Accornero N; Berardelli A
    Exp Brain Res; 2005 Sep; 166(1):43-55. PubMed ID: 15887005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-line effects of quadripulse transcranial magnetic stimulation (QPS) on the contralateral hemisphere studied with somatosensory evoked potentials and near infrared spectroscopy.
    Hirose M; Mochizuki H; Groiss SJ; Tanji Y; Nakamura K; Nakatani-Enomoto S; Enomoto H; Nishizawa M; Ugawa Y
    Exp Brain Res; 2011 Oct; 214(4):577-86. PubMed ID: 21904928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of multichannel near-infrared spectroscopic topography to physiological monitoring of the cortex during cortical mapping: technical case report.
    Hoshino T; Sakatani K; Katayama Y; Fujiwara N; Murata Y; Kobayashi K; Fukaya C; Yamamoto T
    Surg Neurol; 2005 Sep; 64(3):272-5. PubMed ID: 16099265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.