BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16328372)

  • 1. Role of the iron mobilization and oxidative stress regulons in the genomic response of yeast to hydroxyurea.
    Dubacq C; Chevalier A; Courbeyrette R; Petat C; Gidrol X; Mann C
    Mol Genet Genomics; 2006 Feb; 275(2):114-24. PubMed ID: 16328372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxyurea.
    Dubacq C; Chevalier A; Mann C
    Mol Cell Biol; 2004 Mar; 24(6):2560-72. PubMed ID: 14993292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A second iron-regulatory system in yeast independent of Aft1p.
    Rutherford JC; Jaron S; Ray E; Brown PO; Winge DR
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14322-7. PubMed ID: 11734641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of C18:1-phytoceramide as the candidate lipid mediator for hydroxyurea resistance in yeast.
    Matmati N; Metelli A; Tripathi K; Yan S; Mohanty BK; Hannun YA
    J Biol Chem; 2013 Jun; 288(24):17272-84. PubMed ID: 23620586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance.
    Stadler JA; Schweyen RJ
    J Biol Chem; 2002 Oct; 277(42):39649-54. PubMed ID: 12176980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast Aft1 transcription factor activates ribonucleotide reductase catalytic subunit RNR1 in response to iron deficiency.
    Ros-Carrero C; Ramos-Alonso L; Romero AM; Bañó MC; Martínez-Pastor MT; Puig S
    Biochim Biophys Acta Gene Regul Mech; 2020 Jul; 1863(7):194522. PubMed ID: 32147528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication in hydroxyurea: it's a matter of time.
    Alvino GM; Collingwood D; Murphy JM; Delrow J; Brewer BJ; Raghuraman MK
    Mol Cell Biol; 2007 Sep; 27(18):6396-406. PubMed ID: 17636020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering.
    Alkim C; Benbadis L; Yilmaz U; Cakar ZP; François JM
    Metallomics; 2013 Aug; 5(8):1043-60. PubMed ID: 23864114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1.
    Courel M; Lallet S; Camadro JM; Blaiseau PL
    Mol Cell Biol; 2005 Aug; 25(15):6760-71. PubMed ID: 16024809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of APD1 in yeast confers hydroxyurea sensitivity suppressed by Yap1p transcription factor.
    Tang HM; Pan K; Kong KY; Hu L; Chan LC; Siu KL; Sun H; Wong CM; Jin DY
    Sci Rep; 2015 Jan; 5():7897. PubMed ID: 25600293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs.
    Castells-Roca L; Mühlenhoff U; Lill R; Herrero E; Bellí G
    Mol Microbiol; 2011 Jul; 81(1):232-48. PubMed ID: 21542867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional genomics of drug-induced ion homeostasis identifies a novel regulatory crosstalk of iron and zinc regulons in yeast.
    Landstetter N; Glaser W; Gregori C; Seipelt J; Kuchler K
    OMICS; 2010 Dec; 14(6):651-63. PubMed ID: 20695822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage and replication stress induced transcription of RNR genes is dependent on the Ccr4-Not complex.
    Mulder KW; Winkler GS; Timmers HT
    Nucleic Acids Res; 2005; 33(19):6384-92. PubMed ID: 16275785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In yeast cells arrested at the early S-phase by hydroxyurea, rRNA gene promoters and chromatin are poised for transcription while rRNA synthesis is compromised.
    Charton R; Muguet A; Griesenbeck J; Smerdon MJ; Conconi A
    Mutat Res; 2019 May; 815():20-29. PubMed ID: 31063901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ccr4 contributes to tolerance of replication stress through control of CRT1 mRNA poly(A) tail length.
    Woolstencroft RN; Beilharz TH; Cook MA; Preiss T; Durocher D; Tyers M
    J Cell Sci; 2006 Dec; 119(Pt 24):5178-92. PubMed ID: 17158920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions.
    Berthelet S; Usher J; Shulist K; Hamza A; Maltez N; Johnston A; Fong Y; Harris LJ; Baetz K
    Genetics; 2010 Jul; 185(3):1111-28. PubMed ID: 20439772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial control of iron homeostasis. A genome wide analysis of gene expression in a yeast frataxin-deficient strain.
    Foury F; Talibi D
    J Biol Chem; 2001 Mar; 276(11):7762-8. PubMed ID: 11112771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors.
    Carter CD; Kitchen LE; Au WC; Babic CM; Basrai MA
    Mol Cell Biol; 2005 Dec; 25(23):10273-85. PubMed ID: 16287844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast.
    Yamaguchi-Iwai Y; Stearman R; Dancis A; Klausner RD
    EMBO J; 1996 Jul; 15(13):3377-84. PubMed ID: 8670839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA replication inhibitor hydroxyurea alters Fe-S centers by producing reactive oxygen species in vivo.
    Huang ME; Facca C; Fatmi Z; Baïlle D; Bénakli S; Vernis L
    Sci Rep; 2016 Jul; 6():29361. PubMed ID: 27405729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.