These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16328456)

  • 1. Lactate is a metabolic substrate that sustains extraocular muscle function.
    Andrade FH; McMullen CA
    Pflugers Arch; 2006 Apr; 452(1):102-8. PubMed ID: 16328456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria are fast Ca2+ sinks in rat extraocular muscles: a novel regulatory influence on contractile function and metabolism.
    Andrade FH; McMullen CA; Rumbaut RE
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4541-7. PubMed ID: 16303946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonic anhydrase isoform expression and functional role in rodent extraocular muscle.
    Andrade FH; Hatala DA; McMullen CA
    Pflugers Arch; 2004 Aug; 448(5):547-51. PubMed ID: 15112082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue resistance of rat extraocular muscles does not depend on creatine kinase activity.
    McMullen CA; Hayess K; Andrade FH
    BMC Physiol; 2005 Aug; 5():12. PubMed ID: 16107216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic electrical stimulation increases MCT1 and lactate uptake in red and white skeletal muscle.
    McCullagh KJ; Poole RC; Halestrap AP; Tipton KF; O'Brien M; Bonen A
    Am J Physiol; 1997 Aug; 273(2 Pt 1):E239-46. PubMed ID: 9277375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of contractile force of skeletal and extraocular muscles: effects of blood supply, muscle size and in situ or in vitro preparation.
    Croes SA; von Bartheld CS
    J Neurosci Methods; 2007 Oct; 166(1):53-65. PubMed ID: 17716744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis.
    James JH; Fang CH; Schrantz SJ; Hasselgren PO; Paul RJ; Fischer JE
    J Clin Invest; 1996 Nov; 98(10):2388-97. PubMed ID: 8941658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of endurance training on phosphoinositide metabolism of extensor digitorum longus in rat.
    Oueslati H; Gardiner P
    Can J Appl Physiol; 2000 Jun; 25(3):153-64. PubMed ID: 10932033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactic acid and exercise performance : culprit or friend?
    Cairns SP
    Sports Med; 2006; 36(4):279-91. PubMed ID: 16573355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate and force production in skeletal muscle.
    Kristensen M; Albertsen J; Rentsch M; Juel C
    J Physiol; 2005 Jan; 562(Pt 2):521-6. PubMed ID: 15550457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation-induced Ca2+ influx and muscle damage in the rat: loss of membrane integrity and impaired force recovery.
    Mikkelsen UR; Fredsted A; Gissel H; Clausen T
    J Physiol; 2004 Aug; 559(Pt 1):271-85. PubMed ID: 15218060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of β₂-agonists on force during and following anoxia in rat extensor digitorum longus muscle.
    Fredsted A; Gissel H; Ortenblad N; Clausen T
    J Appl Physiol (1985); 2012 Jun; 112(12):2057-67. PubMed ID: 22492937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle expression of LDH and monocarboxylate transporters in growing rats submitted to protein malnutrition.
    Jouaville LF; Fellmann N; Coudert J; Clottes E
    Eur J Nutr; 2006 Sep; 45(6):355-62. PubMed ID: 16847756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ascorbic acid on fatigue of skeletal muscle fibres in long-term cold exposed Sprague Dawley rats.
    Rashid A; Khan UA; Ayub M
    J Ayub Med Coll Abbottabad; 2011; 23(2):55-8. PubMed ID: 24800343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [No influence of increased frequency on fatigability of tetanic contraction in rat atrophic soleus].
    Gao F; Yu ZB
    Sheng Li Xue Bao; 2005 Oct; 57(5):653-8. PubMed ID: 16220206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate as a fuel for mitochondrial respiration.
    Van Hall G
    Acta Physiol Scand; 2000 Apr; 168(4):643-56. PubMed ID: 10759601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive inotropism in mammalian skeletal muscle in vitro during and after fatigue.
    Reading SA; Murrant CL; Barclay JK
    Can J Physiol Pharmacol; 2004 Apr; 82(4):249-61. PubMed ID: 15181463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of metabolic fuel on force production and resting inorganic phosphate levels in mouse skeletal muscle.
    Phillips SK; Wiseman RW; Woledge RC; Kushmerick MJ
    J Physiol; 1993 Mar; 462():135-46. PubMed ID: 8331580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.