BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16328456)

  • 1. Lactate is a metabolic substrate that sustains extraocular muscle function.
    Andrade FH; McMullen CA
    Pflugers Arch; 2006 Apr; 452(1):102-8. PubMed ID: 16328456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria are fast Ca2+ sinks in rat extraocular muscles: a novel regulatory influence on contractile function and metabolism.
    Andrade FH; McMullen CA; Rumbaut RE
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4541-7. PubMed ID: 16303946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonic anhydrase isoform expression and functional role in rodent extraocular muscle.
    Andrade FH; Hatala DA; McMullen CA
    Pflugers Arch; 2004 Aug; 448(5):547-51. PubMed ID: 15112082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue resistance of rat extraocular muscles does not depend on creatine kinase activity.
    McMullen CA; Hayess K; Andrade FH
    BMC Physiol; 2005 Aug; 5():12. PubMed ID: 16107216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic electrical stimulation increases MCT1 and lactate uptake in red and white skeletal muscle.
    McCullagh KJ; Poole RC; Halestrap AP; Tipton KF; O'Brien M; Bonen A
    Am J Physiol; 1997 Aug; 273(2 Pt 1):E239-46. PubMed ID: 9277375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of contractile force of skeletal and extraocular muscles: effects of blood supply, muscle size and in situ or in vitro preparation.
    Croes SA; von Bartheld CS
    J Neurosci Methods; 2007 Oct; 166(1):53-65. PubMed ID: 17716744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis.
    James JH; Fang CH; Schrantz SJ; Hasselgren PO; Paul RJ; Fischer JE
    J Clin Invest; 1996 Nov; 98(10):2388-97. PubMed ID: 8941658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of endurance training on phosphoinositide metabolism of extensor digitorum longus in rat.
    Oueslati H; Gardiner P
    Can J Appl Physiol; 2000 Jun; 25(3):153-64. PubMed ID: 10932033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactic acid and exercise performance : culprit or friend?
    Cairns SP
    Sports Med; 2006; 36(4):279-91. PubMed ID: 16573355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate and force production in skeletal muscle.
    Kristensen M; Albertsen J; Rentsch M; Juel C
    J Physiol; 2005 Jan; 562(Pt 2):521-6. PubMed ID: 15550457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation-induced Ca2+ influx and muscle damage in the rat: loss of membrane integrity and impaired force recovery.
    Mikkelsen UR; Fredsted A; Gissel H; Clausen T
    J Physiol; 2004 Aug; 559(Pt 1):271-85. PubMed ID: 15218060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of β₂-agonists on force during and following anoxia in rat extensor digitorum longus muscle.
    Fredsted A; Gissel H; Ortenblad N; Clausen T
    J Appl Physiol (1985); 2012 Jun; 112(12):2057-67. PubMed ID: 22492937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle expression of LDH and monocarboxylate transporters in growing rats submitted to protein malnutrition.
    Jouaville LF; Fellmann N; Coudert J; Clottes E
    Eur J Nutr; 2006 Sep; 45(6):355-62. PubMed ID: 16847756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ascorbic acid on fatigue of skeletal muscle fibres in long-term cold exposed Sprague Dawley rats.
    Rashid A; Khan UA; Ayub M
    J Ayub Med Coll Abbottabad; 2011; 23(2):55-8. PubMed ID: 24800343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [No influence of increased frequency on fatigability of tetanic contraction in rat atrophic soleus].
    Gao F; Yu ZB
    Sheng Li Xue Bao; 2005 Oct; 57(5):653-8. PubMed ID: 16220206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate as a fuel for mitochondrial respiration.
    Van Hall G
    Acta Physiol Scand; 2000 Apr; 168(4):643-56. PubMed ID: 10759601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive inotropism in mammalian skeletal muscle in vitro during and after fatigue.
    Reading SA; Murrant CL; Barclay JK
    Can J Physiol Pharmacol; 2004 Apr; 82(4):249-61. PubMed ID: 15181463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of metabolic fuel on force production and resting inorganic phosphate levels in mouse skeletal muscle.
    Phillips SK; Wiseman RW; Woledge RC; Kushmerick MJ
    J Physiol; 1993 Mar; 462():135-46. PubMed ID: 8331580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.