These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
643 related articles for article (PubMed ID: 16328651)
1. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high arctic). Kastovská K; Elster J; Stibal M; Santrůcková H Microb Ecol; 2005 Oct; 50(3):396-407. PubMed ID: 16328651 [TBL] [Abstract][Full Text] [Related]
2. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Stibal M; Sabacká M; Kastovská K Microb Ecol; 2006 Nov; 52(4):644-54. PubMed ID: 17072679 [TBL] [Abstract][Full Text] [Related]
3. Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic. Pessi IS; Pushkareva E; Lara Y; Borderie F; Wilmotte A; Elster J Microb Ecol; 2019 Jan; 77(1):136-147. PubMed ID: 29796758 [TBL] [Abstract][Full Text] [Related]
4. Notes on freshwater and terrestrial algae from Ny-Alesund, Svalbard (high Arctic sea area). Kim GH; Klochkova TA; Kang SH J Environ Biol; 2008 Jul; 29(4):485-91. PubMed ID: 19195386 [TBL] [Abstract][Full Text] [Related]
5. [Community structure and phylogenetic analysis of cyanobacteria in cryoconite from surface of the Glacier No. 1 in the Tianshan Mountains]. Ni X; Qi X; Gu Y; Zheng X; Dong J; Ni Y; Cheng G Wei Sheng Wu Xue Bao; 2014 Nov; 54(11):1256-66. PubMed ID: 25752132 [TBL] [Abstract][Full Text] [Related]
6. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Langhans TM; Storm C; Schwabe A Microb Ecol; 2009 Aug; 58(2):394-407. PubMed ID: 19479305 [TBL] [Abstract][Full Text] [Related]
7. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Schmidt SK; Reed SC; Nemergut DR; Grandy AS; Cleveland CC; Weintraub MN; Hill AW; Costello EK; Meyer AF; Neff JC; Martin AM Proc Biol Sci; 2008 Dec; 275(1653):2793-802. PubMed ID: 18755677 [TBL] [Abstract][Full Text] [Related]
8. Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties. Schulz K; Mikhailyuk T; Dreßler M; Leinweber P; Karsten U Microb Ecol; 2016 Jan; 71(1):178-93. PubMed ID: 26507846 [TBL] [Abstract][Full Text] [Related]
9. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. Edwards A; Mur LA; Girdwood SE; Anesio AM; Stibal M; Rassner SM; Hell K; Pachebat JA; Post B; Bussell JS; Cameron SJ; Griffith GW; Hodson AJ; Sattler B FEMS Microbiol Ecol; 2014 Aug; 89(2):222-37. PubMed ID: 24433483 [TBL] [Abstract][Full Text] [Related]
10. Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Reháková K; Chlumská Z; Doležal J Microb Ecol; 2011 Aug; 62(2):337-46. PubMed ID: 21643700 [TBL] [Abstract][Full Text] [Related]
11. Biotope and biocenosis of cryoconite hole ecosystems on Ecology Glacier in the maritime Antarctic. Buda J; Łokas E; Pietryka M; Richter D; Magowski W; Iakovenko NS; Porazinska DL; Budzik T; Grabiec M; Grzesiak J; Klimaszyk P; Gaca P; Zawierucha K Sci Total Environ; 2020 Jul; 724():138112. PubMed ID: 32408434 [TBL] [Abstract][Full Text] [Related]
12. Soil CO2 flux and photoautotrophic community composition in high-elevation, 'barren' soil. Freeman KR; Pescador MY; Reed SC; Costello EK; Robeson MS; Schmidt SK Environ Microbiol; 2009 Mar; 11(3):674-86. PubMed ID: 19187281 [TBL] [Abstract][Full Text] [Related]
13. Contrasting environmental factors drive bacterial and eukaryotic community successions in freshly deglaciated soils. Khan A; Kong W; Muhammad S; Wang F; Zhang G; Kang S FEMS Microbiol Lett; 2019 Oct; 366(19):. PubMed ID: 31738416 [TBL] [Abstract][Full Text] [Related]
14. Microbial community succession in an unvegetated, recently deglaciated soil. Nemergut DR; Anderson SP; Cleveland CC; Martin AP; Miller AE; Seimon A; Schmidt SK Microb Ecol; 2007 Jan; 53(1):110-22. PubMed ID: 17186150 [TBL] [Abstract][Full Text] [Related]
15. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Rime T; Hartmann M; Brunner I; Widmer F; Zeyer J; Frey B Mol Ecol; 2015 Mar; 24(5):1091-108. PubMed ID: 25533315 [TBL] [Abstract][Full Text] [Related]
16. Ubiquity of dominant cyanobacterial taxa along glacier retreat in the Antarctic Peninsula. Almela P; Casero C; Justel A; Quesada A FEMS Microbiol Ecol; 2022 Apr; 98(4):. PubMed ID: 35323914 [TBL] [Abstract][Full Text] [Related]
18. Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats. Omelon CR; Pollard WH; Ferris FG Microb Ecol; 2007 Nov; 54(4):740-52. PubMed ID: 17457639 [TBL] [Abstract][Full Text] [Related]
19. Some Like it High! Phylogenetic Diversity of High-Elevation Cyanobacterial Community from Biological Soil Crusts of Western Himalaya. Čapková K; Hauer T; Řeháková K; Doležal J Microb Ecol; 2016 Jan; 71(1):113-23. PubMed ID: 26552394 [TBL] [Abstract][Full Text] [Related]
20. Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite. Murakami T; Takeuchi N; Mori H; Hirose Y; Edwards A; Irvine-Fynn T; Li Z; Ishii S; Segawa T Microbiome; 2022 Mar; 10(1):50. PubMed ID: 35317857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]