BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 16328674)

  • 1. A regional classification scheme for estimating reference water quality in streams using land-use-adjusted spatial regression-tree analysis.
    Robertson DM; Saad DA; Heisey DM
    Environ Manage; 2006 Feb; 37(2):209-29. PubMed ID: 16328674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental water-quality zones for streams: a regional classification scheme.
    Robertson DM; Saad DA
    Environ Manage; 2003 May; 31(5):581-602. PubMed ID: 12719890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models.
    Bartley R; Speirs WJ; Ellis TW; Waters DK
    Mar Pollut Bull; 2012; 65(4-9):101-16. PubMed ID: 21889170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.
    Emelko MB; Stone M; Silins U; Allin D; Collins AL; Williams CH; Martens AM; Bladon KD
    Glob Chang Biol; 2016 Mar; 22(3):1168-84. PubMed ID: 26313547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources and ages of fine-grained sediment to streams using fallout radionuclides in the Midwestern United States.
    Gellis AC; Fuller CC; Van Metre PC
    J Environ Manage; 2017 Jun; 194():73-85. PubMed ID: 27566936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of land use on fluvial sediment chemistry for the conterminous U.S. - results from the first cycle of the NAWQA Program: trace and major elements, phosphorus, carbon, and sulfur.
    Horowitz AJ; Stephens VC
    Sci Total Environ; 2008 Aug; 400(1-3):290-314. PubMed ID: 18550149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.
    Smith TB; Owens PN
    Sci Total Environ; 2014 Oct; 496():435-442. PubMed ID: 25105754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical analysis and estimation of annual suspended sediments of major rivers in Japan.
    Luo P; He B; Chaffe PL; Nover D; Takara K; Mohd Remy Rozainy MA
    Environ Sci Process Impacts; 2013 May; 15(5):1052-61. PubMed ID: 23563480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010.
    Duan W; Takara K; He B; Luo P; Nover D; Yamashiki Y
    Sci Total Environ; 2013 Sep; 461-462():499-508. PubMed ID: 23751333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water quality in the upper Han River basin, China: the impacts of land use/land cover in riparian buffer zone.
    Li S; Gu S; Tan X; Zhang Q
    J Hazard Mater; 2009 Jun; 165(1-3):317-24. PubMed ID: 19019532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spatial analysis of phosphorus in the Mississippi river basin.
    Jacobson LM; David MB; Drinkwater LE
    J Environ Qual; 2011; 40(3):931-41. PubMed ID: 21546679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient.
    Corsi SR; Klaper RD; Weber DN; Bannerman RT
    Sci Total Environ; 2011 Oct; 409(22):4847-57. PubMed ID: 21899877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?
    Jarvie HP; Neal C; Withers PJ
    Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sediment and total phosphorous contributors in Rock River watershed.
    Mbonimpa EG; Yuan Y; Nash MS; Mehaffey MH
    J Environ Manage; 2014 Jan; 133():214-21. PubMed ID: 24384283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient loss and water quality under extensive grazing in the upper Burdekin river catchment, North Queensland.
    O'Reagain PJ; Brodie J; Fraser G; Bushell JJ; Holloway CH; Faithful JW; Haynes D
    Mar Pollut Bull; 2005; 51(1-4):37-50. PubMed ID: 15757706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying biotic integrity and water chemistry relations in nonwadeable rivers of Wisconsin: toward the development of nutrient criteria.
    Weigel BM; Robertson DM
    Environ Manage; 2007 Oct; 40(4):691-708. PubMed ID: 17638041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial variability associated with shifting land use: water quality and sediment metals in La Parguera, Southwest Puerto Rico.
    Hertler H; Boettner AR; Ramírez-Toro GI; Minnigh H; Spotila J; Kreeger D
    Mar Pollut Bull; 2009 May; 58(5):672-8. PubMed ID: 19281999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracing suspended sediment sources in catchments and river systems.
    Walling DE
    Sci Total Environ; 2005 May; 344(1-3):159-84. PubMed ID: 15907516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quality and quantity of suspended particles in rivers: continent-scale patterns in the United States.
    Dodds WK; Whiles MR
    Environ Manage; 2004 Mar; 33(3):355-67. PubMed ID: 15031760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing water quality at large geographic scales: relations among land use, water physicochemistry, riparian condition, and fish community structure.
    Meador MR; Goldstein RM
    Environ Manage; 2003 Apr; 31(4):504-17. PubMed ID: 12677296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.