These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16329127)

  • 1. Presynaptic effectors contributing to cAMP-induced synaptic potentiation in Drosophila.
    Cheung U; Atwood HL; Zucker RS
    J Neurobiol; 2006 Feb; 66(3):273-80. PubMed ID: 16329127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels.
    Beaumont V; Zucker RS
    Nat Neurosci; 2000 Feb; 3(2):133-41. PubMed ID: 10649568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium influx through HCN channels does not contribute to cAMP-enhanced transmission.
    Zhong N; Beaumont V; Zucker RS
    J Neurophysiol; 2004 Jul; 92(1):644-7. PubMed ID: 15014107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic mechanism underlying cAMP-induced synaptic potentiation in medial prefrontal cortex pyramidal neurons.
    Huang CC; Hsu KS
    Mol Pharmacol; 2006 Mar; 69(3):846-56. PubMed ID: 16306229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cAMP acts on exchange protein activated by cAMP/cAMP-regulated guanine nucleotide exchange protein to regulate transmitter release at the crayfish neuromuscular junction.
    Zhong N; Zucker RS
    J Neurosci; 2005 Jan; 25(1):208-14. PubMed ID: 15634783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic AMP-mediated long-term facilitation of glycinergic transmission in developing spinal dorsal horn neurons.
    Choi IS; Nakamura M; Cho JH; Park HM; Kim SJ; Kim J; Lee JJ; Choi BJ; Jang IS
    J Neurochem; 2009 Sep; 110(5):1695-706. PubMed ID: 19619140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic mechanism underlying cAMP-dependent synaptic potentiation.
    Kaneko M; Takahashi T
    J Neurosci; 2004 Jun; 24(22):5202-8. PubMed ID: 15175390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of Ca2+, hyperpolarization and cyclic nucleotide-activated channel activation, and actin in temporal synaptic tagging.
    Zhong N; Zucker RS
    J Neurosci; 2004 Apr; 24(17):4205-12. PubMed ID: 15115816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of excitatory cholinergic synaptic transmission by Drosophila dopamine D1-like receptors.
    Yuan N; Lee D
    Eur J Neurosci; 2007 Nov; 26(9):2417-27. PubMed ID: 17986026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. beta-Adrenoceptor-mediated long-term up-regulation of the release machinery at rat cerebellar GABAergic synapses.
    Saitow F; Suzuki H; Konishi S
    J Physiol; 2005 Jun; 565(Pt 2):487-502. PubMed ID: 15790662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynaptic mechanisms are essential for forskolin-induced potentiation of synaptic transmission.
    Sokolova IV; Lester HA; Davidson N
    J Neurophysiol; 2006 Apr; 95(4):2570-9. PubMed ID: 16394076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1).
    Fang Y; Olah ME
    J Pharmacol Exp Ther; 2007 Sep; 322(3):1189-200. PubMed ID: 17565009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of hyperpolarization-activated cation channels in synaptic modulation.
    Genlain M; Godaux E; Ris L
    Neuroreport; 2007 Aug; 18(12):1231-5. PubMed ID: 17632273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of hyperpolarisation-activated cyclic nucleotide-gated channel activity on basal cyclic adenosine monophosphate production in spontaneously firing GH3 cells.
    Kretschmannova K; Gonzalez-Iglesias AE; Tomić M; Stojilkovic SS
    J Neuroendocrinol; 2006 Jul; 18(7):484-93. PubMed ID: 16774497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulating PACalpha increases miniature excitatory junction potential frequency at the Drosophila neuromuscular junction.
    Bucher D; Buchner E
    J Neurogenet; 2009; 23(1-2):220-4. PubMed ID: 19052957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gonadotropin-stimulated epidermal growth factor receptor expression in human ovarian surface epithelial cells: involvement of cyclic AMP-dependent exchange protein activated by cAMP pathway.
    Choi JH; Chen CL; Poon SL; Wang HS; Leung PC
    Endocr Relat Cancer; 2009 Mar; 16(1):179-88. PubMed ID: 19022848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role of cyclic nucleotides in neuromuscular transmission.
    Standaert FG; Dretchen KL; Skirboll LR; Morgenroth VH
    J Pharmacol Exp Ther; 1976 Dec; 199(3):553-64. PubMed ID: 186585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal synaptic tagging by I(h) activation and actin: involvement in long-term facilitation and cAMP-induced synaptic enhancement.
    Beaumont V; Zhong N; Froemke RC; Ball RW; Zucker RS
    Neuron; 2002 Feb; 33(4):601-13. PubMed ID: 11856533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic nucleotide-induced bidirectional long-term synaptic plasticity in Drosophila mushroom body.
    Yamada D; Davidson AM; Hige T
    J Physiol; 2024 May; 602(9):2019-2045. PubMed ID: 38488688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repetitive induction of late-phase LTP produces long-lasting synaptic enhancement accompanied by synaptogenesis in cultured hippocampal slices.
    Tominaga-Yoshino K; Urakubo T; Okada M; Matsuda H; Ogura A
    Hippocampus; 2008; 18(3):281-93. PubMed ID: 18058822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.