These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16329197)

  • 1. Arsenic redistribution between sediments and water near a highly contaminated source.
    Keimowitz AR; Zheng Y; Chillrud SN; Mailloux B; Jung HB; Stute M; Simpson HJ
    Environ Sci Technol; 2005 Nov; 39(22):8606-13. PubMed ID: 16329197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathways for arsenic from sediments to groundwater to streams: biogeochemical processes in the Inner Coastal Plain, New Jersey, USA.
    Barringer JL; Mumford A; Young LY; Reilly PA; Bonin JL; Rosman R
    Water Res; 2010 Nov; 44(19):5532-44. PubMed ID: 20580401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depositional influences on porewater arsenic in sediments of a mining-contaminated freshwater lake.
    Toevs G; Morra MJ; Winowiecki L; Strawn D; Polizzotto ML; Fendorf S
    Environ Sci Technol; 2008 Sep; 42(18):6823-9. PubMed ID: 18853795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh.
    Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD
    Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and partitioning of iron, zinc, and arsenic in surface sediments in the Grande River mouth to Cuitzeo Lake, Mexico.
    Villalobos-Castañeda B; Alfaro-Cuevas R; Cortés-Martínez R; Martínez-Miranda V; Márquez-Benavides L
    Environ Monit Assess; 2010 Jul; 166(1-4):331-46. PubMed ID: 19496012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic mobility in contaminated lake sediments.
    Nikolaidis NP; Dobbs GM; Chen J; Lackovic JA
    Environ Pollut; 2004 Jun; 129(3):479-87. PubMed ID: 15016468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-surface wetland sediments as a source of arsenic release to ground water in Asia.
    Polizzotto ML; Kocar BD; Benner SG; Sampson M; Fendorf S
    Nature; 2008 Jul; 454(7203):505-8. PubMed ID: 18650922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat.
    Berg M; Tran HC; Nguyen TC; Pham HV; Schertenleib R; Giger W
    Environ Sci Technol; 2001 Jul; 35(13):2621-6. PubMed ID: 11452583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic mobility and characterization in lakes impacted by gold ore roasting, Yellowknife, NWT, Canada.
    Van Den Berghe MD; Jamieson HE; Palmer MJ
    Environ Pollut; 2018 Mar; 234():630-641. PubMed ID: 29223820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controls on arsenic speciation and solid-phase partitioning in the sediments of a two-basin lake.
    Jay JA; Blute NK; Lin K; Senn D; Hemond HF; Durant JL
    Environ Sci Technol; 2005 Dec; 39(23):9174-81. PubMed ID: 16382939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Arsenic speciation and bioavailability in the Yangtze estuary in spring, 2006].
    Huang QH; Ma ZW; Li JH; Dong LX; Chen L
    Huan Jing Ke Xue; 2008 Aug; 29(8):2131-6. PubMed ID: 18839561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater.
    Anawar HM; Akai J; Sakugawa H
    Chemosphere; 2004 Feb; 54(6):753-62. PubMed ID: 14602108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic in groundwater and sediment in the Mekong River delta, Vietnam.
    Hoang TH; Bang S; Kim KW; Nguyen MH; Dang DM
    Environ Pollut; 2010 Aug; 158(8):2648-58. PubMed ID: 20605297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA.
    Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW
    Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sediment geochemistry and arsenic mobilization in shallow aquifers of the Datong basin, northern China.
    Xie X; Wang Y; Duan M; Liu H
    Environ Geochem Health; 2009 Aug; 31(4):493-502. PubMed ID: 18763040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous influence of indigenous microorganism along with abiotic factors controlling arsenic mobilization in Brahmaputra floodplain, India.
    Sathe SS; Mahanta C; Mishra P
    J Contam Hydrol; 2018 Jun; 213():1-14. PubMed ID: 29598853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic mobilization from sediments in microcosms under sulfate reduction.
    Sun J; Quicksall AN; Chillrud SN; Mailloux BJ; Bostick BC
    Chemosphere; 2016 Jun; 153():254-61. PubMed ID: 27037658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin.
    Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T
    Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.