These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 163292)

  • 1. Uptake of 3-O-methyl-D-glucose into cultured human glioma cells.
    Edström A; Kanje M; Walum E
    J Neurochem; 1975 Feb; 24(2):395-401. PubMed ID: 163292
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetics of 2-deoxy-D-glucose transport into cultured mouse neuroblastoma cells.
    Walum E; Edström A
    Exp Cell Res; 1976 Jan; 97():15-22. PubMed ID: 1245193
    [No Abstract]   [Full Text] [Related]  

  • 3. Sugar transport in giant barnacle muscle fibres.
    Carruthers A
    J Physiol; 1983 Mar; 336():377-96. PubMed ID: 6875913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the stimulation of rat thymocyte 3-O-methyl-glucose transport by mitogenic stimuli.
    Hume DA; Weidemann M
    J Cell Physiol; 1978 Sep; 96(3):303-8. PubMed ID: 353059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells.
    Bigornia L; Bihler I
    Biochim Biophys Acta; 1986 Mar; 885(3):335-44. PubMed ID: 3511975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hexose transport system in the human K-562 chronic myelogenous leukemia-derived cell.
    Dozier JC; Diedrich DF; Turco SJ
    J Cell Physiol; 1981 Jul; 108(1):77-82. PubMed ID: 6943146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexose transport in isolated brown fat cells. A model system for investigating insulin action on membrane transport.
    Czech MP; Lawrence JC; Lynn WS
    J Biol Chem; 1974 Sep; 249(17):5421-7. PubMed ID: 4413673
    [No Abstract]   [Full Text] [Related]  

  • 9. The kinetics of the active and de-energized transport of O-methyl glucose in Ustilago maydis.
    Miller DM; Harun SH
    Biochim Biophys Acta; 1978 Dec; 514(2):320-31. PubMed ID: 32904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of inhibitors on 3-O-methylglucose transport in rabbit ileum.
    Goldner AM; Hajjar JJ; Curran PF
    J Membr Biol; 1972 Dec; 10(3):267-78. PubMed ID: 4667920
    [No Abstract]   [Full Text] [Related]  

  • 11. Separation of two distinct Na+/D-glucose cotransport systems in the human fetal jejunum by means of their differential specificity for 3-O-methylglucose.
    Malo C
    Biochim Biophys Acta; 1990 Feb; 1022(1):8-16. PubMed ID: 2302406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitated transport of 3-O-methyl-D-glucose in human polymorphonuclear leukocytes.
    Okuno Y; Plesner L; Larsen TR; Gliemann J
    FEBS Lett; 1986 Jan; 195(1-2):303-8. PubMed ID: 3943614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of 3-O-methylglucose in isolated rat retinal pigment epithelial cells.
    Stramm LE; Pautler EL
    Exp Eye Res; 1982 Aug; 35(2):91-7. PubMed ID: 7151887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B.
    Seyfang A; Duszenko M
    Eur J Biochem; 1991 Nov; 202(1):191-6. PubMed ID: 1935976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexose transport and phosphorylation by capillaries isolated from rat brain.
    Betz AL; Csejtey J; Goldstein GW
    Am J Physiol; 1979 Jan; 236(1):C96-102. PubMed ID: 434144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites.
    Klip A; Logan WJ; Li G
    Biochim Biophys Acta; 1982 May; 687(2):265-80. PubMed ID: 7093257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials.
    Kimmich GA; Carter-Su C; Randles J
    Am J Physiol; 1977 Nov; 233(5):E357-62. PubMed ID: 562624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin regulation of sugar transport in giant muscle fibres of the barnacle.
    Baker PF; Carruthers A
    J Physiol; 1983 Mar; 336():397-431. PubMed ID: 6308227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cytochalasin B on glucose uptake, utilization, oxidation and insulinotropic action in tumoral insulin-producing cells.
    Malaisse WJ; Giroix MH; Sener A
    Cell Biochem Funct; 1987 Jul; 5(3):183-7. PubMed ID: 3038362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells.
    Mullin JM; Kofeldt LM; Russo LM; Hagee MM; Dantzig AH
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F480-7. PubMed ID: 1558165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.