BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16329466)

  • 1. Techniques for delivery of arachidonic acid to Pacific oyster, Crassostrea gigas, spat.
    Seguineau C; Soudant P; Moal J; Delaporte M; Miner P; Quéré C; Samain JF
    Lipids; 2005 Sep; 40(9):931-9. PubMed ID: 16329466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of 20:4n-6 supplementation on the fatty acid composition and hemocyte parameters of the Pacific oyster Crassostrea gigas.
    Delaporte M; Soudant P; Moal J; Giudicelli E; Lambert C; Séguineau C; Samain JF
    Lipids; 2006 Jun; 41(6):567-76. PubMed ID: 16981435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of a mono-specific algal diet on immune functions in two bivalve species--Crassostrea gigas and Ruditapes philippinarum.
    Delaporte M; Soudant P; Moal J; Lambert C; Quéré C; Miner P; Choquet G; Paillard C; Samain JF
    J Exp Biol; 2003 Sep; 206(Pt 17):3053-64. PubMed ID: 12878673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of dietary supplementation of arachidonic acid on prostaglandin production and oxidative stress in the Pacific oyster Crassostrea gigas.
    Seguineau C; Racotta IS; Palacios E; Delaporte M; Moal J; Soudant P
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Sep; 160(1):87-93. PubMed ID: 21624493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trophic transfer of copper decreases the condition index in Crassostrea gigas spat in concomitance with a change in the microalgal fatty acid profile and enhanced oyster energy demand.
    Akcha F; Coquillé N; Sussarellu R; Rouxel J; Chouvelon T; Gonzalez P; Legeay A; Bruzac S; Sireau T; Gonzalez JL; Gourves PY; Godfrin Y; Buchet V; Stachowski-Haberkorn S
    Sci Total Environ; 2022 Jun; 824():153841. PubMed ID: 35181356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid composition of Ruditapes philippinarum spat: effect of ration and diet quality.
    Fernández-Reiriz MJ; Labarta U; Albentosa M; Pérez-Camacho A
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Jun; 144(2):229-37. PubMed ID: 16647874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prokaryotic and eukaryotic microbiome of Pacific oyster spat is shaped by ocean warming but not acidification.
    Zhong KX; Chan AM; Collicutt B; Daspe M; Finke JF; Foss M; Green TJ; Harley CDG; Hesketh AV; Miller KM; Otto SP; Rolheiser K; Saunders R; Sutherland BJG; Suttle CA
    Appl Environ Microbiol; 2024 Apr; 90(4):e0005224. PubMed ID: 38466091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ microcosms, a tool for assessment of pesticide impacts on oyster spat (Crassostrea gigas).
    Stachowski-Haberkorn S; Quiniou F; Nedelec M; Robert R; Limon G; de la Broise D
    Ecotoxicology; 2008 May; 17(4):235-45. PubMed ID: 18236155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rearing practices identified as risk factors for ostreid herpesvirus 1 (OsHV-1) infection in Pacific oyster Crassostrea gigas spat.
    Normand J; Blin JL; Jouaux A
    Dis Aquat Organ; 2014 Aug; 110(3):201-11. PubMed ID: 25114044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of microalgal diets and commercial wheatgerm flours on the lipid profile of Ruditapes decussatus spat.
    Fernández-Reiriz MJ; Labarta U; Albentosa M; Pérez-Camacho A
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):369-77. PubMed ID: 11253809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of deleterious effects of microplastics from aquaculture materials on pediveliger larva settlement and oyster spat growth of Pacific oyster, Crassostrea gigas.
    Bringer A; Cachot J; Dubillot E; Lalot B; Thomas H
    Sci Total Environ; 2021 Nov; 794():148708. PubMed ID: 34198086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Production Calendar Based on Water Temperature, Spat Size, and Husbandry Practices Reduce OsHV-1 μvar Impact on Cultured Pacific Oyster
    Carrasco N; Gairin I; Pérez J; Andree KB; Roque A; Fernández-Tejedor M; Rodgers CJ; Aguilera C; Furones MD
    Front Physiol; 2017; 8():125. PubMed ID: 28316573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial activity, hemocyte parameters and lipid composition modulation by dietary conditioning in the Pacific oyster Crassostrea gigas.
    Dudognon T; Lambert C; Quere C; Auffret M; Soudant P; Kraffe E
    J Comp Physiol B; 2014 Apr; 184(3):303-17. PubMed ID: 24441864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viability of dietary substitution of live microalgae with dry
    Rato A; Joaquim S; Tavares TG; Martins ZE; Guedes AC; Pereira LF; Machado J; Matias AM; Gonçalves JFM; Vaz-Pires P; Magnoni LJ; Ozório ROA; Matias D
    Biol Open; 2018 Oct; 7(9):. PubMed ID: 30127097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of algae diets (Skeletonema costatum and Rhodomonas baltica) on the biochemical composition and sensory characteristics of Pacific cupped oysters (Crassostrea gigas) during land-based refinement.
    van Houcke J; Medina I; Maehre HK; Cornet J; Cardinal M; Linssen J; Luten J
    Food Res Int; 2017 Oct; 100(Pt 1):151-160. PubMed ID: 28873674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty Acid Profile of Pacific Oyster, Crassostrea gigas, Fed Different Ratios of Dietary Seaweed and Microalgae during Broodstock Conditioning.
    Rato A; Pereira LF; Joaquim S; Gomes R; Afonso C; Cardoso C; Machado J; Gonçalves JFM; Vaz-Pires P; Magnoni LJ; Matias AM; Matias D; Bandarra NM; Ozório ROA
    Lipids; 2019 Sep; 54(9):531-542. PubMed ID: 31314150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and biochemical responses of the oyster Crassostrea gigas to controlled exposures to metals and Alexandrium minutum.
    Haberkorn H; Lambert C; Le Goïc N; Quéré C; Bruneau A; Riso R; Auffret M; Soudant P
    Aquat Toxicol; 2014 Feb; 147():158-67. PubMed ID: 24418747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccumulation and metabolisation of (14)C-pyrene by the Pacific oyster Crassostrea gigas exposed via seawater.
    Bustamante P; Luna-Acosta A; Clemens S; Cassi R; Thomas-Guyon H; Warnau M
    Chemosphere; 2012 May; 87(8):938-44. PubMed ID: 22342284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acid composition of serum lipid classes in mice following allergic sensitisation with or without dietary docosahexaenoic acid-enriched fish oil substitution.
    Rühl R; Koch C; Marosvölgyi T; Mihály J; Schweigert FJ; Worm M; Decsi T
    Br J Nutr; 2008 Jun; 99(6):1239-46. PubMed ID: 18005485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast.
    Dagorn F; Couzinet-Mossion A; Kendel M; Beninger PG; Rabesaotra V; Barnathan G; Wielgosz-Collin G
    Mar Drugs; 2016 May; 14(6):. PubMed ID: 27231919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.