These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 1632948)
61. Preparation and characterization of Prussian blue nanowire array and bioapplication for glucose biosensing. Qu F; Shi A; Yang M; Jiang J; Shen G; Yu R Anal Chim Acta; 2007 Dec; 605(1):28-33. PubMed ID: 18022407 [TBL] [Abstract][Full Text] [Related]
62. "Wired" enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Ohara TJ; Rajagopalan R; Heller A Anal Chem; 1994 Aug; 66(15):2451-7. PubMed ID: 8092486 [TBL] [Abstract][Full Text] [Related]
63. In situ assembled mass-transport controlling micromembranes and their application in implanted amperometric glucose sensors. Chen T; Friedman KA; Lei I; Heller A Anal Chem; 2000 Aug; 72(16):3757-63. PubMed ID: 10959960 [TBL] [Abstract][Full Text] [Related]
64. An amperometric glucose sensor with combined enzyme layers. Weiss T; Cammann K Horm Metab Res Suppl; 1988; 20():23-5. PubMed ID: 3248786 [TBL] [Abstract][Full Text] [Related]
65. An electrochemiluminescent sensor for glucose employing a modified carbon nanotube paste electrode. Chen J; Lin Z; Chen G Anal Bioanal Chem; 2007 May; 388(2):399-407. PubMed ID: 17342537 [TBL] [Abstract][Full Text] [Related]
66. Permselective monolayer membrane based on two-dimensional cross-linked polysiloxane LB films for hydrogen peroxide detecting glucose sensors. Kato D; Masaike M; Majima T; Hirata Y; Mizutani F; Sakata M; Hirayama C; Kunitake M Chem Commun (Camb); 2002 Nov; (22):2616-7. PubMed ID: 12510264 [TBL] [Abstract][Full Text] [Related]
71. On-line removal of redox-active interferents by a porous electrode before amperometric blood glucose determination. Deng C; Peng Y; Su L; Liu YN; Zhou F Anal Chim Acta; 2012 Mar; 719():52-6. PubMed ID: 22340530 [TBL] [Abstract][Full Text] [Related]
72. In vivo response of microfabricated glucose sensors to glycemia changes in normal rats. Koudelka M; Rohner-Jeanrenaud F; Terrettaz J; Bobbioni-Harsch E; de Rooij NF; Jeanrenaud B Biomed Biochim Acta; 1989; 48(11-12):953-6. PubMed ID: 2636840 [TBL] [Abstract][Full Text] [Related]
73. Glucose-sensitive membrane and infrared absorption spectroscopy for potential use as an implantable glucose sensor. Robinson RJ; McDonald SD ASAIO J; 1992; 38(3):M458-62. PubMed ID: 1457902 [TBL] [Abstract][Full Text] [Related]
77. The needle glucose electrode: in vitro performance and optimisation for implantation. Vadgama P; Spoors J; Tang LX; Battersby C Biomed Biochim Acta; 1989; 48(11-12):935-42. PubMed ID: 2636838 [TBL] [Abstract][Full Text] [Related]
78. Laboratory evaluation of the Glucocard blood glucose test meter. Lewis BD Clin Chem; 1992 Oct; 38(10):2093-5. PubMed ID: 1394997 [TBL] [Abstract][Full Text] [Related]
79. Continuous glucose monitoring in interstitial fluid using glucose oxidase-based sensor compared to established blood glucose measurement in rats. Woderer S; Henninger N; Garthe CD; Kloetzer HM; Hajnsek M; Kamecke U; Gretz N; Kraenzlin B; Pill J Anal Chim Acta; 2007 Jan; 581(1):7-12. PubMed ID: 17386418 [TBL] [Abstract][Full Text] [Related]
80. Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction. Zhang D; Zhang K; Yao YL; Xia XH; Chen HY Langmuir; 2004 Aug; 20(17):7303-7. PubMed ID: 15301519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]