BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16329495)

  • 41. Electronic structure, molecular electrostatic potential and hydrogen bonding in DMSO-X complexes (X = ethanol, methanol and water).
    Dhumal NR
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):654-60. PubMed ID: 21524933
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.
    Stare J; Panek J; Eckert J; Grdadolnik J; Mavri J; Hadzi D
    J Phys Chem A; 2008 Feb; 112(7):1576-86. PubMed ID: 18225869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy.
    Paolantoni M; Sassi P; Morresi A; Santini S
    J Chem Phys; 2007 Jul; 127(2):024504. PubMed ID: 17640134
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [In-situ research on Raman spectroscopy of 1-pentanol under high pressure].
    Tian F; Zheng HF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):953-7. PubMed ID: 20545138
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vibrational coupling as diagnostic for intramolecular hydrogen bonds of carbohydrates in aqueous solution.
    Carmona P; Molina M; Aboitiz N; Vicent C
    Biopolymers; 2002; 67(1):20-5. PubMed ID: 11842410
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrogen-bonding between pyrimidine and water: a vibrational spectroscopic analysis.
    Schlücker S; Koster J; Singh RK; Asthana BP
    J Phys Chem A; 2007 Jun; 111(24):5185-91. PubMed ID: 17523603
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)n- (n = 2 and 3), H2O...X- (X = F, Cl, Br, and I), and H2O...M- (M = Cu, Ag, and Au).
    Wu DY; Duan S; Liu XM; Xu YC; Jiang YX; Ren B; Xu X; Lin SH; Tian ZQ
    J Phys Chem A; 2008 Feb; 112(6):1313-21. PubMed ID: 18215023
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental (FTIR and FT-Raman) and ab initio and DFT study of vibrational frequencies of 5-amino-2-nitrobenzoic acid.
    Ramalingam M; Sundaraganesan N; Saleem H; Swaminathan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):23-30. PubMed ID: 18178128
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Raman spectroscopic studies of n-pentadecane under high temperature].
    Qiao EW; Zheng HF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jan; 27(1):78-80. PubMed ID: 17390654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Revised vibrational band assignments for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile based on ab initio, DFT and normal coordinate calculations.
    Hiremath CS; Kalkoti GB; Aralakkanavar MK
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):200-4. PubMed ID: 19560961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Raman spectroscopic study on the structure of water in aqueous solution of alpha,omega-amino acids.
    Kitano H; Takaha K; Gemmei-Ide M
    J Colloid Interface Sci; 2005 Mar; 283(2):452-8. PubMed ID: 15721918
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Research on Raman spectra of isooctane at ambient temperature and ambient pressure to 1. 2 GPa].
    Zhang FF; Zheng HF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Mar; 32(3):676-80. PubMed ID: 22582631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ethanol hydrates and solid solution formed by gas condensation: an in situ study by micro-Raman scattering and X-ray diffraction.
    Facq S; Danède F; Chazallon B
    J Phys Chem A; 2010 Oct; 114(39):10646-54. PubMed ID: 20831147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vibrational analysis of molecular interactions in aqueous glucose solutions. Temperature and concentration effects.
    Gallina ME; Sassi P; Paolantoni M; Morresi A; Cataliotti RS
    J Phys Chem B; 2006 May; 110(17):8856-64. PubMed ID: 16640445
    [TBL] [Abstract][Full Text] [Related]  

  • 55. C-H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (N = 1-8) interfaces.
    Lu R; Gan W; Wu BH; Zhang Z; Guo Y; Wang HF
    J Phys Chem B; 2005 Jul; 109(29):14118-29. PubMed ID: 16852773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-pressure effects in pyrene crystals: vibrational spectroscopy.
    Sun B; Dreger ZA; Gupta YM
    J Phys Chem A; 2008 Oct; 112(42):10546-51. PubMed ID: 18826198
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in the structure of water deduced from the pressure dependence of the Raman OH frequency.
    Kawamoto T; Ochiai S; Kagi H
    J Chem Phys; 2004 Apr; 120(13):5867-70. PubMed ID: 15267467
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Applications of moissanite anvil cell for Raman spectroscopy under high-temperature and high-pressure].
    Duan TY; Sun Q; Zheng HF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jun; 25(6):902-5. PubMed ID: 16201368
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of colloidal dispersions of rhodium nanoparticles under high temperatures and high pressures.
    Harada M; Abe D; Kimura Y
    J Colloid Interface Sci; 2005 Dec; 292(1):113-21. PubMed ID: 16024035
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combined use of infrared and Raman spectra in the characterization of orthoclase under various hydrostatic pressures.
    Liu R; Wang ZH; Xu Q; Yu N; Cao MC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Feb; 34(2):426-30. PubMed ID: 24822414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.