BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 16329896)

  • 41. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years.
    Li C; Salas W; DeAngelo B; Rose S
    J Environ Qual; 2006; 35(4):1554-65. PubMed ID: 16825476
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico.
    Duperron S; Sibuet M; MacGregor BJ; Kuypers MM; Fisher CR; Dubilier N
    Environ Microbiol; 2007 Jun; 9(6):1423-38. PubMed ID: 17504480
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture.
    Villano M; Aulenta F; Ciucci C; Ferri T; Giuliano A; Majone M
    Bioresour Technol; 2010 May; 101(9):3085-90. PubMed ID: 20074943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibitory effects of the macrolide antimicrobial tylosin on anaerobic treatment.
    Shimada T; Zilles JL; Morgenroth E; Raskin L
    Biotechnol Bioeng; 2008 Sep; 101(1):73-82. PubMed ID: 18646223
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of changes in methanogenesis and associated microflora in a flooded alluvial soil following repeated application of dicyandiamide, a nitrification inhibitor.
    Mohanty SR; Bharati K; Rao VR; Adhya TK
    Microbiol Res; 2009; 164(1):71-80. PubMed ID: 17207983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temporal change of composition and potential activity of the thermophilic archaeal community during the composting of organic material.
    Thummes K; Kämpfer P; Jäckel U
    Syst Appl Microbiol; 2007 Jul; 30(5):418-29. PubMed ID: 17336478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of different carbon sources on methane production and the methanogenic communities in iron rich flooded paddy soil.
    Luo D; Li Y; Yao H; Chapman SJ
    Sci Total Environ; 2022 Jun; 823():153636. PubMed ID: 35124061
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electron donor effect on nitrate reduction pathway and kinetics in a mixed methanogenic culture.
    Tugtas AE; Pavlostathis SG
    Biotechnol Bioeng; 2007 Nov; 98(4):756-63. PubMed ID: 17492695
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methanogenesis: surprising molecules, microorganisms and ecosystems.
    Vogels GD; van der Drift C; Stumm CK; Keltjens JT; Zwart KB
    Antonie Van Leeuwenhoek; 1984; 50(5-6):557-67. PubMed ID: 6442121
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anaerobic biodegradability of Tween surfactants used as a carbon source for the microbial reductive dechlorination of hexachlorobenzene.
    Yeh DH; Pavlostathis SG
    Water Sci Technol; 2005; 52(1-2):343-9. PubMed ID: 16180448
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intestinal methanogenesis in primates--a genetic and evolutionary approach.
    Hackstein JH; Van Alen TA; Op Den Camp H; Smits A; Mariman E
    Dtsch Tierarztl Wochenschr; 1995 Apr; 102(4):152-4. PubMed ID: 7555692
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of antibiotics, 2-bromoethanesulfonic acid and pyromellitic diimide on methanogenesis in rumen ciliate cultures in vitro.
    Váradyová Z; Kisidayová S; Zelenák I; Siroka P
    Arch Tierernahr; 2001; 54(1):33-46. PubMed ID: 11851015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The bacterivory of interstitial ciliates in association with bacterial biomass and production in the hyporheic zone of a lowland stream.
    Königs S; Cleven EJ
    FEMS Microbiol Ecol; 2007 Jul; 61(1):54-64. PubMed ID: 17506825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett Salt Marsh.
    Buckley DH; Baumgartner LK; Visscher PT
    Environ Microbiol; 2008 Apr; 10(4):967-77. PubMed ID: 18218028
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark).
    Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ
    Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78 degrees N) as characterized by 16S rRNA gene fingerprinting.
    Høj L; Olsen RA; Torsvik VL
    FEMS Microbiol Ecol; 2005 Jun; 53(1):89-101. PubMed ID: 16329932
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 degrees C).
    Liu D; Zeng RJ; Angelidaki I
    Biotechnol Bioeng; 2008 Aug; 100(6):1108-14. PubMed ID: 18553394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.
    Sanphoti N; Towprayoon S; Chaiprasert P; Nopharatana A
    J Environ Manage; 2006 Oct; 81(1):27-35. PubMed ID: 16580123
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methane as fuel for anaerobic microorganisms.
    Thauer RK; Shima S
    Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellulolytic, fermentative, and methanogenic guilds in benthic periphyton mats from the Florida Everglades.
    Uz I; Chauhan A; Ogram AV
    FEMS Microbiol Ecol; 2007 Aug; 61(2):337-47. PubMed ID: 17651137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.