These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 16329904)

  • 41. Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio.
    Sekiguchi Y; Muramatsu M; Imachi H; Narihiro T; Ohashi A; Harada H; Hanada S; Kamagata Y
    Int J Syst Evol Microbiol; 2008 Nov; 58(Pt 11):2541-8. PubMed ID: 18984690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methane oxidation in freely and poorly drained grassland soils and effects of cattle urine application.
    Li Z; Kelliher FM
    J Environ Qual; 2007; 36(5):1241-8. PubMed ID: 17636284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Availability and properties of materials for the Fakse Landfill biocover.
    Pedersen GB; Scheutz C; Kjeldsen P
    Waste Manag; 2011 May; 31(5):884-94. PubMed ID: 21185710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbial oxidation of CH(4) at different temperatures in landfill cover soils.
    Börjesson G; Sundh I; Svensson B
    FEMS Microbiol Ecol; 2004 Jun; 48(3):305-12. PubMed ID: 19712300
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long-term behavior of passively aerated compost methanotrophic biofilter columns.
    Wilshusen JH; Hettiaratchi JP; Stein VB
    Waste Manag; 2004; 24(7):643-53. PubMed ID: 15288296
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biodegradation of methane and halocarbons in simulated landfill biocover systems containing compost materials.
    Scheutz C; Pedersen GB; Costa G; Kjeldsen P
    J Environ Qual; 2009; 38(4):1363-71. PubMed ID: 19465711
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.
    Cébron A; Bodrossy L; Chen Y; Singer AC; Thompson IP; Prosser JI; Murrell JC
    FEMS Microbiol Ecol; 2007 Oct; 62(1):12-23. PubMed ID: 17714486
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methane production and consumption in an active volcanic environment of Southern Italy.
    Castaldi S; Tedesco D
    Chemosphere; 2005 Jan; 58(2):131-9. PubMed ID: 15571745
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Thermophilic and thermotolerant bacteria that assimilate methane].
    Malashenko IuR; Romanovskaia VA; Bogachenko VN; Shved AD
    Mikrobiologiia; 1975; 44(5):855-62. PubMed ID: 1207503
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection and classification of atmospheric methane oxidizing bacteria in soil.
    Bull ID; Parekh NR; Hall GH; Ineson P; Evershed RP
    Nature; 2000 May; 405(6783):175-8. PubMed ID: 10821271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Depth profiles of methane oxidation potentials and methanotrophic community in a lab-scale biocover.
    Lee EH; Moon KE; Kim TG; Cho KS
    J Biotechnol; 2014 Aug; 184():56-62. PubMed ID: 24862199
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methane oxidation potential of boreal landfill cover materials: The governing factors and enhancement by nutrient manipulation.
    Maanoja ST; Rintala JA
    Waste Manag; 2015 Dec; 46():399-407. PubMed ID: 26298483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes.
    Chen Y; Dumont MG; Cébron A; Murrell JC
    Environ Microbiol; 2007 Nov; 9(11):2855-69. PubMed ID: 17922768
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scrutinizing compost properties and their impact on methane oxidation efficiency.
    Huber-Humer M; Tintner J; Böhm K; Lechner P
    Waste Manag; 2011 May; 31(5):871-83. PubMed ID: 21036026
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A methane-driven microbial food web in a wetland rice soil.
    Murase J; Frenzel P
    Environ Microbiol; 2007 Dec; 9(12):3025-34. PubMed ID: 17991031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activity and Identification of Methanotrophic Bacteria in Arable and No-Tillage Soils from Lublin Region (Poland).
    Szafranek-Nakonieczna A; Wolińska A; Zielenkiewicz U; Kowalczyk A; Stępniewska Z; Błaszczyk M
    Microb Ecol; 2019 Apr; 77(3):701-712. PubMed ID: 30171270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of high compost temperature on enzymatic activity and species diversity of culturable bacteria in cattle manure compost.
    Miyatake F; Iwabuchi K
    Bioresour Technol; 2005 Nov; 96(16):1821-5. PubMed ID: 16051089
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine.
    Han B; Chen Y; Abell G; Jiang H; Bodrossy L; Zhao J; Murrell JC; Xing XH
    FEMS Microbiol Ecol; 2009 Nov; 70(2):40-51. PubMed ID: 19515201
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria.
    Nyerges G; Stein LY
    FEMS Microbiol Lett; 2009 Aug; 297(1):131-6. PubMed ID: 19566684
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biochemical and molecular characterization of methanotrophs in soil from a pristine New Zealand beech forest.
    Singh BK; Tate K
    FEMS Microbiol Lett; 2007 Oct; 275(1):89-97. PubMed ID: 17696992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.