BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16330079)

  • 1. Geochemical modeling of cadmium sorption to soil as a function of soil properties.
    Choi J
    Chemosphere; 2006 Jun; 63(11):1824-34. PubMed ID: 16330079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Cd(II) adsorption to heterogeneous subsurface soils in the presence of citric acid using a semi-empirical surface complexation approach.
    Kantar C; Ikizoglu G; Koleli N; Kaya O
    J Contam Hydrol; 2009 Nov; 110(3-4):100-9. PubMed ID: 19836102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.
    Korichi S; Bensmaili A
    J Hazard Mater; 2009 Sep; 169(1-3):780-93. PubMed ID: 19428178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modeling.
    Chisholm-Brause CJ; Berg JM; Little KM; Matzner RA; Morris DE
    J Colloid Interface Sci; 2004 Sep; 277(2):366-82. PubMed ID: 15341848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils.
    Appel C; Ma L
    J Environ Qual; 2002; 31(2):581-9. PubMed ID: 11931450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential sorption of lead and cadmium in three tropical soils.
    Appel C; Ma LQ; Rhue RD; Reve W
    Environ Pollut; 2008 Sep; 155(1):132-40. PubMed ID: 18069107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling.
    Heidmann I; Christl I; Leu C; Kretzschmar R
    J Colloid Interface Sci; 2005 Feb; 282(2):270-82. PubMed ID: 15589531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting cadmium adsorption on soils using WHAM VI.
    Shi Z; Allen HE; Di Toro DM; Lee SZ; Flores Meza DM; Lofts S
    Chemosphere; 2007 Sep; 69(4):605-12. PubMed ID: 17459454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant.
    Aşçi Y; Nurbaş M; Açikel YS
    J Hazard Mater; 2008 Jun; 154(1-3):663-73. PubMed ID: 18068293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium solubility and sorption in a long-term sludge-amended arable soil.
    Bergkvist P; Berggren D; Jarvis N
    J Environ Qual; 2005; 34(5):1530-8. PubMed ID: 16091605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface complexation modeling of Cd(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite.
    Schaller MS; Koretsky CM; Lund TJ; Landry CJ
    J Colloid Interface Sci; 2009 Nov; 339(2):302-9. PubMed ID: 19740474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics.
    Zhou DM; Wang YJ; Cang L; Hao XZ; Luo XS
    Chemosphere; 2004 Dec; 57(10):1237-44. PubMed ID: 15519368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Cd and citric acid, EDTA in red soil.
    Zhou DM; Wang SQ; Chen HM
    J Environ Sci (China); 2001 Apr; 13(2):153-6. PubMed ID: 11590733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of Cd(II) onto kaolin as a soil component and desorption of Cd(II) from kaolin using rhamnolipid biosurfactant.
    Aşçi Y; Nurbaş M; Açikel YS
    J Hazard Mater; 2007 Jan; 139(1):50-6. PubMed ID: 16842909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of two aromatic acids onto iron oxides: experimental study and modeling.
    Hanna K
    J Colloid Interface Sci; 2007 May; 309(2):419-28. PubMed ID: 17303153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida.
    Pabst MW; Miller CD; Dimkpa CO; Anderson AJ; McLean JE
    Chemosphere; 2010 Nov; 81(7):904-10. PubMed ID: 20797767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils.
    Bolan N; Mahimairaja S; Kunhikrishnan A; Naidu R
    J Hazard Mater; 2013 Oct; 261():725-32. PubMed ID: 23177243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of As, Cd and Tl as influenced by industrial by-products applied to an acidic soil: equilibrium and kinetic experiments.
    Aguilar-Carrillo J; Garrido F; Barrios L; García-González MT
    Chemosphere; 2006 Dec; 65(11):2377-87. PubMed ID: 16872662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Describing chlorophenol sorption on variable-charge soil using the triple-layer model.
    Cea M; Seaman JC; Jara AA; Mora ML; Diez MC
    J Colloid Interface Sci; 2005 Dec; 292(1):171-8. PubMed ID: 16055143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Temperature on the Adsorption of Cadmium(II) and Cobalt(II) on Kaolinite.
    Angove MJ; Johnson BB; Wells JD
    J Colloid Interface Sci; 1998 Aug; 204(1):93-103. PubMed ID: 9665771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.