BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 16330767)

  • 1. Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight.
    Altshuler DL; Dickson WB; Vance JT; Roberts SP; Dickinson MH
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):18213-8. PubMed ID: 16330767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.
    Vance JT; Altshuler DL; Dickson WB; Dickinson MH; Roberts SP
    Physiol Biochem Zool; 2014; 87(6):870-81. PubMed ID: 25461650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments.
    Wang ZJ; Birch JM; Dickinson MH
    J Exp Biol; 2004 Jan; 207(Pt 3):449-60. PubMed ID: 14691093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allometry of kinematics and energetics in carpenter bees (Xylocopa varipuncta) hovering in variable-density gases.
    Roberts SP; Harrison JF; Dudley R
    J Exp Biol; 2004 Feb; 207(Pt 6):993-1004. PubMed ID: 14766958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of artificial wing wear on the flight capacity of the honey bee Apis mellifera.
    Vance JT; Roberts SP
    J Insect Physiol; 2014 Jun; 65():27-36. PubMed ID: 24768843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.
    Cheng X; Sun M
    Sci Rep; 2016 May; 6():25706. PubMed ID: 27168523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The aerodynamics of hovering flight in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient.
    Groom DJ; Toledo MC; Welch KC
    J Comp Physiol B; 2017 Jan; 187(1):165-182. PubMed ID: 27431590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular control of wingbeat kinematics in Anna's hummingbirds (Calypte anna).
    Altshuler DL; Welch KC; Cho BH; Welch DB; Lin AF; Dickson WB; Dickinson MH
    J Exp Biol; 2010 Jul; 213(Pt 14):2507-14. PubMed ID: 20581280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight.
    Birch JM; Dickinson MH
    J Exp Biol; 2003 Jul; 206(Pt 13):2257-72. PubMed ID: 12771174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of load type (pollen or nectar) and load mass on hovering metabolic rate and mechanical power output in the honey bee Apis mellifera.
    Feuerbacher E; Fewell JH; Roberts SP; Smith EF; Harrison JF
    J Exp Biol; 2003 Jun; 206(Pt 11):1855-65. PubMed ID: 12728007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromuscular control of hovering wingbeat kinematics in response to distinct flight challenges in the ruby-throated hummingbird, Archilochus colubris.
    Mahalingam S; Welch KC
    J Exp Biol; 2013 Nov; 216(Pt 22):4161-71. PubMed ID: 23948477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.