BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 16331479)

  • 21. Hibernation by a free-ranging subtropical bat (Nyctophilus bifax).
    Stawski C; Turbill C; Geiser F
    J Comp Physiol B; 2009 May; 179(4):433-41. PubMed ID: 19112568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interspecific differences and commonalities in maternity roosting by tree cavity-roosting bats over a maternity season in a timber production landscape.
    Rueegger N; Law B; Goldingay R
    PLoS One; 2018; 13(3):e0194429. PubMed ID: 29543883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, Lasiurus cinereus, during its spring migration.
    Cryan PM; Wolf BO
    J Exp Biol; 2003 Oct; 206(Pt 19):3381-90. PubMed ID: 12939370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energetics of migratory bats during stopover: a test of the torpor-assisted migration hypothesis.
    Baloun DE; Guglielmo CG
    J Exp Biol; 2019 Mar; 222(Pt 6):. PubMed ID: 30787135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of reproductive condition and concurrent environmental factors on torpor and foraging patterns in female big brown bats (Eptesicus fuscus).
    Rintoul JL; Brigham RM
    J Comp Physiol B; 2014 Aug; 184(6):777-87. PubMed ID: 24973192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera:Vespertilionidae) when euthermic and torpid.
    Hosken DJ; Withers PC
    J Comp Physiol B; 1997 Jan; 167(1):71-80. PubMed ID: 9051907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis).
    Wojciechowski MS; Jefimow M; Tegowska E
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):828-40. PubMed ID: 16891137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-wildfire physiological ecology of an Australian microbat.
    Doty AC; Stawski C; Law BS; Geiser F
    J Comp Physiol B; 2016 Oct; 186(7):937-46. PubMed ID: 27245066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roost selection by female Hemprich's long-eared bats.
    Korine C; Daniel S; Pinshow B
    Behav Processes; 2013 Nov; 100():131-8. PubMed ID: 24021945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring subcutaneous temperature and differential rates of rewarming from hibernation and daily torpor in two species of bats.
    Currie SE; Körtner G; Geiser F
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Dec; 190():26-31. PubMed ID: 26300411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Do greater mouse-eared bats experience a trade-off between energy conservation and learning?
    Ruczyński I; Clarin TM; Siemers BM
    J Exp Biol; 2014 Nov; 217(Pt 22):4043-8. PubMed ID: 25392460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Passive rewarming from torpor in hibernating bats: minimizing metabolic costs and cardiac demands.
    Currie SE; Noy K; Geiser F
    Am J Physiol Regul Integr Comp Physiol; 2015 Jan; 308(1):R34-41. PubMed ID: 25411363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Communally breeding bats use physiological and behavioural adjustments to optimise daily energy expenditure.
    Pretzlaff I; Kerth G; Dausmann KH
    Naturwissenschaften; 2010 Apr; 97(4):353-63. PubMed ID: 20143039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of reproductive condition, roost microclimate, and weather patterns on summer torpor use by a vespertilionid bat.
    Johnson JS; Lacki MJ
    Ecol Evol; 2014 Jan; 4(2):157-66. PubMed ID: 24558571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thrifty Females, Frisky Males: Winter Energetics of Hibernating Bats from a Cold Climate.
    Czenze ZJ; Jonasson KA; Willis CKR
    Physiol Biochem Zool; 2017; 90(4):502-511. PubMed ID: 28641050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bats on a budget: torpor-assisted migration saves time and energy.
    McGuire LP; Jonasson KA; Guglielmo CG
    PLoS One; 2014; 9(12):e115724. PubMed ID: 25551615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seasonality of torpor patterns and physiological variables of a free-ranging subtropical bat.
    Stawski C; Geiser F
    J Exp Biol; 2010 Feb; 213(3):393-9. PubMed ID: 20086123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fat and fed: frequent use of summer torpor in a subtropical bat.
    Stawski C; Geiser F
    Naturwissenschaften; 2010 Jan; 97(1):29-35. PubMed ID: 19756460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of diet quality and ambient temperature on the use of torpor by two species of neotropical nectar-feeding bats.
    Ayala-Berdon J; Vázquez-Fuerte R; Beamonte-Barrientos R; Schondube JE
    J Exp Biol; 2017 Mar; 220(Pt 5):920-929. PubMed ID: 28250178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reproductive energetics of the nectar-feeding bat Glossophaga soricina (Phyllostomidae).
    Voigt CC
    J Comp Physiol B; 2003 Feb; 173(1):79-85. PubMed ID: 12592446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.