These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 1633151)
1. Barnase has subsites that give rise to large rate enhancements. Day AG; Parsonage D; Ebel S; Brown T; Fersht AR Biochemistry; 1992 Jul; 31(28):6390-5. PubMed ID: 1633151 [TBL] [Abstract][Full Text] [Related]
2. Coulombic forces in protein-RNA interactions: binding and cleavage by ribonuclease A and variants at Lys7, Arg10, and Lys66. Fisher BM; Ha JH; Raines RT Biochemistry; 1998 Sep; 37(35):12121-32. PubMed ID: 9724524 [TBL] [Abstract][Full Text] [Related]
3. The role of Glu-60 in the specificity of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase) towards dinucleotides, poly(A) and RNA. Bastyns K; Froeyer M; Volckaert G; Engelborghs Y Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):737-42. PubMed ID: 7516656 [TBL] [Abstract][Full Text] [Related]
4. Coulombic effects of remote subsites on the active site of ribonuclease A. Fisher BM; Schultz LW; Raines RT Biochemistry; 1998 Dec; 37(50):17386-401. PubMed ID: 9860854 [TBL] [Abstract][Full Text] [Related]
5. Effect of secondary substrate binding in penicillopepsin: contributions of subsites S3 and S2' to kcat. Hofmann T; Allen B; Bendiner M; Blum M; Cunningham A Biochemistry; 1988 Feb; 27(4):1140-6. PubMed ID: 3284578 [TBL] [Abstract][Full Text] [Related]
6. Kinetic characterization of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase) and investigation of key residues in catalysis by site-directed mutagenesis. Mossakowska DE; Nyberg K; Fersht AR Biochemistry; 1989 May; 28(9):3843-50. PubMed ID: 2665810 [TBL] [Abstract][Full Text] [Related]
7. Shift in nucleotide conformational equilibrium contributes to increased rate of catalysis of GpAp versus GpA in barnase. Giraldo J; De Maria L; Wodak SJ Proteins; 2004 Aug; 56(2):261-76. PubMed ID: 15211510 [TBL] [Abstract][Full Text] [Related]
8. Subsite preferences of pepstatin-insensitive carboxyl proteinases from bacteria. Narutaki S; Dunn BM; Oda K J Biochem; 1999 Jan; 125(1):75-81. PubMed ID: 9880800 [TBL] [Abstract][Full Text] [Related]
9. Interdependency of the binding subsites in subtilisin. Grøn H; Breddam K Biochemistry; 1992 Sep; 31(37):8967-71. PubMed ID: 1390683 [TBL] [Abstract][Full Text] [Related]
10. Experimental and theoretical study of electrostatic effects on the isoelectric pH and the pKa of the catalytic residue His-102 of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase). Bastyns K; Froeyen M; Diaz JF; Volckaert G; Engelborghs Y Proteins; 1996 Mar; 24(3):370-8. PubMed ID: 8778784 [TBL] [Abstract][Full Text] [Related]
11. Increase of specificity of RNase from Bacillus amyloliquefaciens (barnase) by substitution of Glu for Ser57 using site-directed mutagenesis. Yakovlev GI; Moiseyev GP; Struminskaya NK; Romakhina ER; Leshchinskaya IB; Hartley RW Eur J Biochem; 1993 Jul; 215(1):167-70. PubMed ID: 8344276 [TBL] [Abstract][Full Text] [Related]
12. A combined kinetic and modeling study of the catalytic center subsites of human angiogenin. Russo N; Acharya KR; Vallee BL; Shapiro R Proc Natl Acad Sci U S A; 1996 Jan; 93(2):804-8. PubMed ID: 8570639 [TBL] [Abstract][Full Text] [Related]
13. Subsite binding in an RNase: structure of a barnase-tetranucleotide complex at 1.76-A resolution. Buckle AM; Fersht AR Biochemistry; 1994 Feb; 33(7):1644-53. PubMed ID: 8110767 [TBL] [Abstract][Full Text] [Related]
14. Role of catalytic and non-catalytic subsite residues in ribonuclease activity of human eosinophil-derived neurotoxin. Sikriwal D; Seth D; Batra JK Biol Chem; 2009 Mar; 390(3):225-34. PubMed ID: 19090717 [TBL] [Abstract][Full Text] [Related]
15. Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Schreiber G; Fersht AR Biochemistry; 1993 May; 32(19):5145-50. PubMed ID: 8494892 [TBL] [Abstract][Full Text] [Related]
16. The determination of subsite binding energies of porcine pancreatic alpha-amylase by comparing hydrolytic activity towards substrates. Seigner C; Prodanov E; Marchis-Mouren G Biochim Biophys Acta; 1987 Jun; 913(2):200-9. PubMed ID: 3496119 [TBL] [Abstract][Full Text] [Related]
17. A two-binding-site kinetic model for the ribonuclease-T1-catalysed transesterification of dinucleoside phosphate substrates. Steyaert J; Engelborghs Y Eur J Biochem; 1995 Oct; 233(1):140-4. PubMed ID: 7588737 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional structure of a barnase-3'GMP complex at 2.2A resolution. Guillet V; Lapthorn A; Mauguen Y FEBS Lett; 1993 Sep; 330(2):137-40. PubMed ID: 8396045 [TBL] [Abstract][Full Text] [Related]
19. Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching. Grøn H; Meldal M; Breddam K Biochemistry; 1992 Jul; 31(26):6011-8. PubMed ID: 1627543 [TBL] [Abstract][Full Text] [Related]
20. Protein-carbohydrate interactions defining substrate specificity in Bacillus 1,3-1,4-beta-D-glucan 4-glucanohydrolases as dissected by mutational analysis. Piotukh K; Serra V; Borriss R; Planas A Biochemistry; 1999 Dec; 38(49):16092-104. PubMed ID: 10587432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]