These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 16331744)
1. The analysis of 1-propanol and 2-propanol in humid air samples using selected ion flow tube mass spectrometry. Wang T; Carroll W; Lenny W; Boit P; Smith D Rapid Commun Mass Spectrom; 2006; 20(2):125-30. PubMed ID: 16331744 [TBL] [Abstract][Full Text] [Related]
2. Influence of water vapour on selected ion flow tube mass spectrometric analyses of trace gases in humid air and breath. Spanĕl P; Smith D Rapid Commun Mass Spectrom; 2000; 14(20):1898-906. PubMed ID: 11013418 [TBL] [Abstract][Full Text] [Related]
3. Quantification of hydrogen cyanide in humid air by selected ion flow tube mass spectrometry. Spanĕl P; Wang T; Smith D Rapid Commun Mass Spectrom; 2004; 18(16):1869-73. PubMed ID: 15329882 [TBL] [Abstract][Full Text] [Related]
4. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Dryahina K; Smith D; Spanel P Rapid Commun Mass Spectrom; 2010 May; 24(9):1296-304. PubMed ID: 20391601 [TBL] [Abstract][Full Text] [Related]
5. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Shestivska V; Nemec A; Dřevínek P; Sovová K; Dryahina K; Spaněl P Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2459-67. PubMed ID: 21818806 [TBL] [Abstract][Full Text] [Related]
6. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry. Smith D; Pysanenko A; Spanel P Rapid Commun Mass Spectrom; 2009 May; 23(10):1419-25. PubMed ID: 19347971 [TBL] [Abstract][Full Text] [Related]
7. Quantification of hydrogen sulphide in humid air by selected ion flow tube mass spectrometry. Spanel P; Smith D Rapid Commun Mass Spectrom; 2000; 14(13):1136-40. PubMed ID: 10867689 [TBL] [Abstract][Full Text] [Related]
8. Selected ion flow tube mass spectrometry of exhaled breath condensate headspace. Cáp P; Dryahina K; Pehal F; Spanel P Rapid Commun Mass Spectrom; 2008 Sep; 22(18):2844-50. PubMed ID: 18712707 [TBL] [Abstract][Full Text] [Related]
9. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Smith D; Spanel P Mass Spectrom Rev; 2005; 24(5):661-700. PubMed ID: 15495143 [TBL] [Abstract][Full Text] [Related]
10. An exploratory comparative study of volatile compounds in exhaled breath and emitted by skin using selected ion flow tube mass spectrometry. Turner C; Parekh B; Walton C; Spanel P; Smith D; Evans M Rapid Commun Mass Spectrom; 2008; 22(4):526-32. PubMed ID: 18215004 [TBL] [Abstract][Full Text] [Related]
11. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Turner C; Spanel P; Smith D Physiol Meas; 2006 Apr; 27(4):321-37. PubMed ID: 16537976 [TBL] [Abstract][Full Text] [Related]
12. On-line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry. Spanĕl P; Smith D Rapid Commun Mass Spectrom; 2001; 15(8):563-9. PubMed ID: 11312505 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection. Gilchrist FJ; Bright-Thomas RJ; Jones AM; Smith D; Spaněl P; Webb AK; Lenney W J Breath Res; 2013 Jun; 7(2):026010. PubMed ID: 23680696 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis. Enderby B; Smith D; Carroll W; Lenney W Pediatr Pulmonol; 2009 Feb; 44(2):142-7. PubMed ID: 19148935 [TBL] [Abstract][Full Text] [Related]
15. A study of the reactions of H3O+, NO+ and O2+ ions with nine alkoxy alcohols. Wang T Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Apr; 26(4):747-52. PubMed ID: 16836154 [TBL] [Abstract][Full Text] [Related]
16. The novel selected-ion flow tube approach to trace gas analysis of air and breath. Smith D; Spanel P Rapid Commun Mass Spectrom; 1996; 10(10):1183-98. PubMed ID: 8759327 [TBL] [Abstract][Full Text] [Related]
17. Coordinated FA-MS and SIFT-MS analyses of breath following ingestion of D2O and ethanol: total body water, dispersal kinetics and ethanol metabolism. Spanel P; Wang T; Smith D Physiol Meas; 2005 Aug; 26(4):447-57. PubMed ID: 15886440 [TBL] [Abstract][Full Text] [Related]
18. Combined use of gas chromatography and selected ion flow tube mass spectrometry for absolute trace gas quantification. Kubista J; Spanel P; Dryahina K; Workman C; Smith D Rapid Commun Mass Spectrom; 2006; 20(4):563-7. PubMed ID: 16419024 [TBL] [Abstract][Full Text] [Related]
19. Increased concentrations of breath haloamines are not detectable in airways inflammation using SIFT-MS. Storer MK; Dummer JD; Cook J; McEwan M; Epton MJ J Breath Res; 2011 Sep; 5(3):037105. PubMed ID: 21654020 [TBL] [Abstract][Full Text] [Related]
20. Positive and negative ion chemistry of the anesthetic halothane (1-bromo-1-chloro-2,2,2-trifluoroethane) in air plasma at atmospheric pressure. Marotta E; Bosa E; Scorrano G; Paradisi C Rapid Commun Mass Spectrom; 2005; 19(3):391-6. PubMed ID: 15645512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]