These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1633178)

  • 1. Electron-transfer self-exchange kinetics of trimethylphosphine horse-heart myoglobin.
    Brunel C; Bondon A; Simonneaux G
    Biochim Biophys Acta; 1992 Jul; 1101(1):73-8. PubMed ID: 1633178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron self-exchange in Pseudomonas cytochromes.
    Timkovich R; Cai ML; Dixon DW
    Biochem Biophys Res Commun; 1988 Feb; 150(3):1044-50. PubMed ID: 2829889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible Role of the Iron Coordination Sphere in Hemoprotein Electron Transfer Self-Exchange: (1)H NMR Study of the Cytochrome c-PMe(3) Complex.
    Legrand N; Bondon A; Simonneaux G
    Inorg Chem; 1996 Mar; 35(6):1627-1631. PubMed ID: 11666383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of the heme propionate groups to the electron transfer and electrostatic properties of myoglobin.
    Lim AR; Sishta BP; Mauk AG
    J Inorg Biochem; 2006 Dec; 100(12):2017-23. PubMed ID: 17070916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study of electron transport in heme proteins. X. Effect of pH, ionic strength, and zinc ions and the rate of ferricytochrome c reduction by oxymyoglobin from swine heart].
    Postnikova GB; Tselikova SV; Sivozhelezov VS
    Mol Biol (Mosk); 1992; 26(4):880-90. PubMed ID: 1331770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer reactions between cytochrome f and plastocyanin from Brassica komatsuna.
    Niwa S; Ishikawa H; Nikai S; Takabe T
    J Biochem; 1980 Oct; 88(4):1177-83. PubMed ID: 7451412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-range electron transfer with myoglobin immobilized at Au/mixed-SAM junctions: mechanistic impact of the strong protein confinement.
    Khoshtariya DE; Dolidze TD; Shushanyan M; van Eldik R
    J Phys Chem B; 2014 Jan; 118(3):692-706. PubMed ID: 24369906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear-magnetic-resonance determination of the electron self-exchange rate constant of Clostridium pasteurianum rubredoxin.
    Gaillard J; Zhuang-Jackson H; Moulis JM
    Eur J Biochem; 1996 Jun; 238(2):346-9. PubMed ID: 8681944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of electron transfer between cytochrome c and laccase.
    Sakurai T
    Biochemistry; 1992 Oct; 31(40):9844-7. PubMed ID: 1327127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A singular value decomposition approach for kinetic analysis of reactions of HNO with myoglobin.
    Zapata AL; Kumar MR; Pervitsky D; Farmer PJ
    J Inorg Biochem; 2013 Jan; 118():171-8. PubMed ID: 23140900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer reactions of cytochrome f from Brassica komatsuna with hexacyanoferrate.
    Takabe T; Niwa S; Ishikawa H; Takenaka K
    J Biochem; 1980 Oct; 88(4):1167-76. PubMed ID: 7451411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe(III) - Sulfide interaction in globins: Characterization and quest for a putative Fe(IV)-sulfide species.
    Mot AC; Bischin C; Damian G; Attia AAA; Gal E; Dina N; Leopold N; Silaghi-Dumitrescu R
    J Inorg Biochem; 2018 Feb; 179():32-39. PubMed ID: 29156293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Catalytic effect of ferricyanide on the rate of electron transfer between myoglobin and cytochrome c].
    Moiseeva SA; Postnikova GB; Sivozhelezov VS
    Biofizika; 2001; 46(3):415-22. PubMed ID: 11449539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of methemerythrin by deoxymyoglobin: a protein-protein redox reaction not involving electron-transfer proteins.
    Bradić Z; Harrington PC; Wilkins RG
    Biochemistry; 1979 Mar; 18(5):889-93. PubMed ID: 33706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of carbon monoxide by perferrylmyoglobin.
    Libardi SH; Skibsted LH; Cardoso DR
    J Agric Food Chem; 2014 Feb; 62(8):1950-5. PubMed ID: 24506496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable-temperature study of the heme-reorientation process in equine myoglobin.
    Yee S; Peyton DH
    Biochim Biophys Acta; 1995 Oct; 1252(2):295-9. PubMed ID: 7578236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic docking and electron transfer between myoglobin and cytochrome b(5).
    Liang ZX; Jiang M; Ning Q; Hoffman BM
    J Biol Inorg Chem; 2002 Jun; 7(6):580-8. PubMed ID: 12072963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferricytochrome c oxidation of cobaltocytochrome c. Comparison of experiments with electron-transfer theories.
    Chien JC; Gibson HL; Dickinson LC
    Biochemistry; 1978 Jun; 17(13):2579-84. PubMed ID: 209821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes.
    Liang ZX; Kurnikov IV; Nocek JM; Mauk AG; Beratan DN; Hoffman BM
    J Am Chem Soc; 2004 Mar; 126(9):2785-98. PubMed ID: 14995196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of metsulphmyoglobin and metmyoglobin reduction by Fe(EDTA)2-.
    Lim AR; Mauk AG
    Biochem J; 1985 Aug; 229(3):765-9. PubMed ID: 3931628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.